2. DE LA RICA R, MATSUI H. Applications of peptide and protein-based materials in bionanotechnology[J]. Chem Soc Rev, 2010, 39(9):3499-3509.
[3]
3. KOUTSOPOULOS S, UNSWORTH L D, NAGAI Y, et al. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold[J]. Proc Natl Acad Sci U S A, 2009, 106(12):4623-4628.
[4]
4. BRANCO M C, POCHAN D J, WAGNER N J, et al. The effect of protein structure on their controlled release from an injectable peptide hydrogel[J]. Biomaterials, 2010, 31(36):9527-9534.
6. WALLACE D G, ROSENBLATT J. Collagen gel systems for sustained delivery and tissue engineering[J]. Adv Drug Deliv Rev, 2003, 55(12):1631-1649.
[7]
7. ZISCH A H, SCHENK U, SCHENSE J C, et al. Covalently conjugated VEGF--fibrin matrices for endothelialization[J]. J Control Release, 2001, 72(1):101-113.
[8]
8. VERHEYEN E, DELAIN-BIOTON L, DER WAL S V, et al. Protein macromonomers for covalent immobilization and subsequent triggered release from hydrogels[J]. J Control Release, 2010, 148(1):e18-e19.
[9]
9. CENSI R, DI MARTINO P, VERMONDEN T, et al. Hydrogels for protein delivery in tissue engineering[J]. Journal of Controlled Release, 2012, 161(2):680-692.
[10]
10. SAKIYAMA-ELBERT S E, HUBBELL J A. Development of fibrin derivatives for controlled release of heparin-binding growth factors[J]. J Control Release, 2000, 65(3):389-402.
[11]
11. SCHILLEMANS J P, HENNINK W E, VAN NOSTRUM C F. Charged dextran hydrogels for post-loading and release of proteins[J]. J Control Release, 2010, 148(1):e82-e83.
[12]
12. DE WOLF F A, BRETT G M. Ligand-binding proteins:their potential for application in systems for controlled delivery and uptake of ligands[J]. Pharmacol Rev, 2000, 52(2):207-236.
[13]
13. SARGEANT T D, GULER M O, OPPENHEIMER S M, et al. Hybrid bone implants:self-assembly of peptide amphiphile nanofibers within porous Titanium[J]. Biomaterials, 2008, 29(2):161-171.
[14]
14. MILLER R E, KOPESKY P W, GRODZINSKY A J. Growth factor delivery through self-assembling peptide scaffolds[J]. Clin Orthop Relat Res, 2011, 469(10):2716-2724.
[15]
15. DAVIS M E, HSIEH P C, TAKAHASHI T, et al. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction[J]. Proc Natl Acad Sci U S A, 2006, 103(21):8155-8160.
[16]
16. PADIN-IRUEGAS M E, MISAO Y, DAVIS M E, et al. Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction[J]. Circulation, 2009, 120(10):876-887.
[17]
17. LIU Y F, ZHAO X J. PRESENTATION OF BIOACTIVE EPITOPES WITH FREE N-TERMINI ON SELF-ASSEMBLING PEPTIDE NANOFIBERS[J]. Nano, 2011, 6(1):47-57.
19. LAVIK E, LANGER R. Tissue engineering:current state and perspectives[J]. Appl Microbiol Biotechnol, 2004, 65(1):1-8.
[20]
20. HOFFMAN A S. Hydrogels for biomedical applications[J]. Adv Drug Deliv Rev, 2002, 54(1):3-12.
[21]
21. PEPPAS N A, HILT J Z, KHADEMHOSSEINI A, et al. Hydrogels in biology and medicine:From molecular principles to bionanotechnology[J]. Adv Mater, 2006, 18(11):1345-1360.