全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

生物素夹心法对小分子蛋白质胰岛素样生长因子1在自组装短肽水凝胶中的缓释

DOI: doi:10.7507/1001-5515.20150070

Keywords: 生物素夹心法, 自组装短肽水凝胶, 蛋白质缓释, 胰岛素样生长因子1

Full-Text   Cite this paper   Add to My Lib

Abstract:

蛋白质在自组装短肽水凝胶中的缓释速度与蛋白质大小和凝胶孔径直接相关, 如何提高小分子蛋白质的缓释效果一直是个问题。本研究采用生物素夹心法研究胰岛素样生长因子1(IGF-1)在N端带有RGD序列的自组装短肽(P3)水凝胶中的释放效果。紫外分光光度计检测每个时间点所释放的IGF-1浓度, 结果显示IGF-1的释放速度明显降低。水凝胶培养实验表明用生物素夹心法延长IGF-1释放时间能够有效地促进小鼠成软骨细胞ATDC5的增殖

References

[1]  1. 陈咏竹, 邱峰, 赵晓军.自组装短肽系统及其材料学应用[J].材料科学与工程学报, 2009, 27(2):292-296.
[2]  2. DE LA RICA R, MATSUI H. Applications of peptide and protein-based materials in bionanotechnology[J]. Chem Soc Rev, 2010, 39(9):3499-3509.
[3]  3. KOUTSOPOULOS S, UNSWORTH L D, NAGAI Y, et al. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold[J]. Proc Natl Acad Sci U S A, 2009, 106(12):4623-4628.
[4]  4. BRANCO M C, POCHAN D J, WAGNER N J, et al. The effect of protein structure on their controlled release from an injectable peptide hydrogel[J]. Biomaterials, 2010, 31(36):9527-9534.
[5]  5. 刘燕飞, 吴敏, 刘博, 等.自组装短肽水凝胶对功能性蛋白质IGF-1、aFGF以及VEGF的缓释[J].生物医学工程学杂志, 2011, 28(2):310-313.
[6]  6. WALLACE D G, ROSENBLATT J. Collagen gel systems for sustained delivery and tissue engineering[J]. Adv Drug Deliv Rev, 2003, 55(12):1631-1649.
[7]  7. ZISCH A H, SCHENK U, SCHENSE J C, et al. Covalently conjugated VEGF--fibrin matrices for endothelialization[J]. J Control Release, 2001, 72(1):101-113.
[8]  8. VERHEYEN E, DELAIN-BIOTON L, DER WAL S V, et al. Protein macromonomers for covalent immobilization and subsequent triggered release from hydrogels[J]. J Control Release, 2010, 148(1):e18-e19.
[9]  9. CENSI R, DI MARTINO P, VERMONDEN T, et al. Hydrogels for protein delivery in tissue engineering[J]. Journal of Controlled Release, 2012, 161(2):680-692.
[10]  10. SAKIYAMA-ELBERT S E, HUBBELL J A. Development of fibrin derivatives for controlled release of heparin-binding growth factors[J]. J Control Release, 2000, 65(3):389-402.
[11]  11. SCHILLEMANS J P, HENNINK W E, VAN NOSTRUM C F. Charged dextran hydrogels for post-loading and release of proteins[J]. J Control Release, 2010, 148(1):e82-e83.
[12]  12. DE WOLF F A, BRETT G M. Ligand-binding proteins:their potential for application in systems for controlled delivery and uptake of ligands[J]. Pharmacol Rev, 2000, 52(2):207-236.
[13]  13. SARGEANT T D, GULER M O, OPPENHEIMER S M, et al. Hybrid bone implants:self-assembly of peptide amphiphile nanofibers within porous Titanium[J]. Biomaterials, 2008, 29(2):161-171.
[14]  14. MILLER R E, KOPESKY P W, GRODZINSKY A J. Growth factor delivery through self-assembling peptide scaffolds[J]. Clin Orthop Relat Res, 2011, 469(10):2716-2724.
[15]  15. DAVIS M E, HSIEH P C, TAKAHASHI T, et al. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction[J]. Proc Natl Acad Sci U S A, 2006, 103(21):8155-8160.
[16]  16. PADIN-IRUEGAS M E, MISAO Y, DAVIS M E, et al. Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction[J]. Circulation, 2009, 120(10):876-887.
[17]  17. LIU Y F, ZHAO X J. PRESENTATION OF BIOACTIVE EPITOPES WITH FREE N-TERMINI ON SELF-ASSEMBLING PEPTIDE NANOFIBERS[J]. Nano, 2011, 6(1):47-57.
[18]  18. 焦利敏, 廖学品, 石碧.紫外分光光度法下直接测定蛋白质溶液的浓度[J].化学研究与应用, 2007, 19(5):562-566.
[19]  19. LAVIK E, LANGER R. Tissue engineering:current state and perspectives[J]. Appl Microbiol Biotechnol, 2004, 65(1):1-8.
[20]  20. HOFFMAN A S. Hydrogels for biomedical applications[J]. Adv Drug Deliv Rev, 2002, 54(1):3-12.
[21]  21. PEPPAS N A, HILT J Z, KHADEMHOSSEINI A, et al. Hydrogels in biology and medicine:From molecular principles to bionanotechnology[J]. Adv Mater, 2006, 18(11):1345-1360.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133