全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

在细胞水平上调控骨重建的相关研究进展

DOI: doi:10.7507/1001-5515.201606011

Keywords: 骨重建, 破骨细胞, 成骨细胞, 骨细胞

Full-Text   Cite this paper   Add to My Lib

Abstract:

骨重建是一个不断进行骨吸收与骨形成的平衡动态过程,需要成骨细胞和破骨细胞的紧密配合,并经由复杂的旁分泌和自分泌途径,被相关调节蛋白紧密地调控。骨细胞、骨被覆细胞、骨巨噬细胞以及血管内皮细胞在基础多细胞单位(BMU)中均通过配体-受体复合物的细胞信号网络参与到骨重建调节过程中。此外,T 淋巴细胞和 B 淋巴细胞通过处于骨微环境中的分泌型和膜结合型因子,也参与到骨重建过程中,在骨免疫中调节骨的内稳态。在骨重建的过程中,常由于 BMU 中的细胞间连接被破坏,导致多发骨质疏松症和其他骨疾病发生。本文主要从细胞水平上描述骨重建过程中的细胞间联系、分子基础和新型旁分泌或偶联因子,了解骨重建过程和相关基因,有助于对骨质疏松等骨科疾病的药物开发奠定基础

References

[1]  1. Boyle W J, Simonet W S, Lacey D L. Osteoclast differentiation and activation. Nature, 2003, 423(6937): 337-342.
[2]  2. Nied?wiedzki T, Filipowska J. Bone remodeling in the context of cellular and systemic regulation: the role of osteocytes and the nervous system. J Mol Endocrinol, 2015, 55(2): R23-R36.
[3]  3. Balemans W, Ebeling M, Patel N, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST) Hum Mol Genet, 2001, 10(5): 537-543.
[4]  4. Brunkow M E, Gardner J C, Van Ness J, et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet, 2001, 68(3): 577-589.
[5]  5. Kim H J, Yoon H J, Yoon K A, et al. Lipocalin-2 inhibits osteoclast formation by suppressing the proliferation and differentiation of osteoclast lineage cells. Exp Cell Res, 2015, 334(2): 301-309.
[6]  6. Zhao Chen, Irie N, Takada Yasunari, et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab, 2006, 4(2): 111-121.
[7]  7. Delaisse J M. The reversal phase of the bone-remodeling cycle: cellular prerequisites for coupling resorption and formation. Bonekey Rep, 2014, 3(3): 561.
[8]  8. V??n?nen H K, Horton M. The osteoclast clear zone is a specialized cell-extracellular matrix adhesion structure. J Cell Sci, 1995, 108(Pt 8): 2729-2732.
[9]  9. Kleinhans C, Schmid F F, Schmid F V, et al. Comparison of osteoclastogenesis and resorption activity of human osteoclasts on tissue culture polystyrene and on natural extracellular bone matrix in 2D and 3D. J Biotechnol, 2015, 205: 101-110.
[10]  10. Honma M, Ikebuchi Y, Kariya Y, et al. Regulatory mechanisms of RANKL presentation to osteoclast precursors. Curr Osteoporos Rep, 2014, 12(1): 115-120.
[11]  11. Martin T J, Sims N A. RANKL/OPG; critical role in bone physiology. Rev Endocr Metab Disord, 2015, 16(2): 131-139.
[12]  12. Sapir-Koren R, Livshits G. Osteocyte control of bone remodeling: is sclerostin a key molecular coordinator of the balanced bone resorption-formation cycles?. Osteoporos Int, 2014, 25(12): 2685-2700.
[13]  13. Yuan X, Cao J, Liu T, et al. Regulators of G protein signaling 12 promotes osteoclastogenesis in bone remodeling and pathological bone loss. Cell Death Differ, 2015, 22(12): 2046-2057.
[14]  14. Koide N, Kondo Y, Odkhuu E, et al. Inhibition of receptor activator of nuclear factor-κB ligand-or lipopolysaccharide-induced osteoclast formation by conophylline through downregulation of CREB. Immunol Lett, 2014, 161(1): 31-37.
[15]  15. Johnson R W, Mcgregor N E, Brennan H J, et al. Glycoprotein130 (Gp130)/interleukin-6 (IL-6) signalling in osteoclasts promotes bone formation in periosteal and trabecular bone. Bone, 2015, 81: 343-351.
[16]  16. Wozney J M, Rosen V, Celeste A J, et al. Novel regulators of bone formation: molecular clones and activities. Science, 1988, 242(4885): 1528-1534.
[17]  17. Thudium C S, Moscatelli I, Flores C, et al. A comparison of osteoclast-rich and osteoclast-poor osteopetrosis in adult mice sheds light on the role of the osteoclast in coupling bone resorption and bone formation. Calcif Tissue Int, 2014, 95(1): 83-93.
[18]  18. Tanaka K, Hashizume M, Mihara M, et al. Anti-interleukin-6 receptor antibody prevents systemic bone mass loss via reducing the number of osteoclast precursors in bone marrow in a collagen-induced arthritis model. Clin Exp Immunol, 2014, 175(2): 172-180.
[19]  19. Lu Lei, Huang Jinghui, Zhang Xu, et al. Changes of temporomandibular joint and semaphorin 4D/Plexin-B1 expression in a mouse model of incisor malocclusion. Journal of oral & facial pain and headache, 2014, 28(1): 68-79.
[20]  20. Sato K, Itoh T, Kato T, et al. Serum-free isolation and culture system to enhance the proliferation and bone regeneration of adipose tissue-derived mesenchymal stem cells. In Vitro Cell Dev Biol Anim, 2015, 51(5): 515-529.
[21]  21. Ellies D L, Economou A, Viviano B, et al. Wise regulates bone deposition through genetic interactions with Lrp5. PLoS One, 2014, 9(5): e96257.
[22]  22. Beederman M, Lamplot J D, Nan G, et al. BMP signaling in mesenchymal stem cell differentiation and bone formation. J Biomed Sci Eng, 2013, 6(8A): 32-52.
[23]  23. Anderson H C. Matrix vesicles and calcification. Curr Rheumatol Rep, 2003, 5(3): 222-226.
[24]  24. Park K, Ju W C, Yeo J H, et al. Increased OPG/RANKL ratio in the conditioned medium of soybean-treated osteoblasts suppresses RANKL-induced osteoclast differentiation. Int J Mol Med, 2014, 33(1): 178-184.
[25]  25. Chukkapalli S, Levi E, Rishi A K, et al. PTHrP attenuates osteoblast cell death and apoptosis induced by a novel class of anti-cancer agents. Endocrine, 2016, 51(3): 534-544.
[26]  26. Hu Minyi, Tian G W, Gibbons D E, et al. Dynamic fluid flow induced mechanobiological modulation of in situ osteocyte Calcium oscillations. Arch Biochem Biophys, 2015, 579: 55-61.
[27]  27. Bellido T. Osteocyte-driven bone remodeling. Calcif Tissue Int, 2014, 94(1): 25-34.
[28]  28. Horwood N J. Macrophage polarization and bone formation: a review. Clin Rev Allergy Immunol, 2016, 51(1): 79-86.
[29]  29. Brandi M L, Collin-Osdoby P. Vascular biology and the skeleton. J Bone Miner Res, 2006, 21(2): 183-192.
[30]  30. Tomlinson R E, Silva M J. HIF-1α regulates bone formation after osteogenic mechanical loading. Bone, 2015, 73: 98-104.
[31]  31. Meednu N, Zhang Hengwei, Owen T, et al. Production of RANKL by memory B cells: a Link between B cells and bone erosion in rheumatoid arthritis. Arthritis & rheumatology (Hoboken, N. J.), 2016, 68(4): 805-816.
[32]  32. Hu Y, Ek-Rylander B, Wendel M, et al. Reciprocal effects of Interferon-γ and IL-4 on differentiation to osteoclast-like cells by RANKL or LPS. Oral Dis, 2014, 20(7): 682-692.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133