1. Rockoff S D, Sweet E, Bleustein J. The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res, 1969, 3(2): 163-175.
[2]
2. Cao K D, Grimm M J, Yang K H. Load sharing within a human lumbar vertebral body using the finite element method. Spine (Phila Pa 1976), 2001, 26(12): E253-E260.
[3]
3. Frobin W, Brinckmann P, Kramer M, et al. Height of lumbar discs measured from radiographs compared with degeneration and height classified from Mr images. Eur Radiol, 2001, 11(2): 263-269.
[4]
4. Adams M A, Mcnally D S, Dolan P. 'Stress' distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br, 1996, 78(6): 965-972.
[5]
5. Kayanja M M, Ferrara L A, Lieberman I H. Distribution of anterior cortical shear strain after a thoracic wedge compression fracture. Spine J, 2004, 4(1): 76-87.
[6]
6. Polikeit A, Nolte L P, Ferguson S J. Simulated influence of osteoporosis and disc degeneration on the load transfer in a lumbar functional spinal unit. J Biomech, 2004, 37(7): 1061-1069.
[7]
7. Ruberté L M, Natarajan R N, Andersson G B. Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments--a finite element model study. J Biomech, 2009, 42(3): 341-348.
[8]
8. Kurutz M, Oroszváry L. Finite element analysis of weightbath hydrotraction treatment of degenerated lumbar spine segments in elastic phase. J Biomech, 2010, 43(3): 433-441.
11. Lu Yongtao, Rosenau E, Paetzold H, et al. Strain changes on the cortical shell of vertebral bodies due to spine ageing: a parametric study using a finite element model evaluated by strain measurements. Proc Inst Mech Eng H, 2013, 227(12): 1265-1274.
[12]
12. Rohlmann A, Zander T, Schmidt H, et al. Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. J Biomech, 2006, 39(13): 2484-2490.
[13]
13. Burstein A H, Reilly D T, Martens m. Aging of bone tissue - mechanical-properties. J Bone Joint Surg Am, 1976, 58(1): 82-86.
[14]
14. Lindahl O. Mechanical properties of dried defatted spongy bone. Acta Orthop Scand, 1976, 47(1): 11-19.
[15]
15. Shiraziadl A, Ahmed A M, Shrivastava S C. A finite-element study of a lumbar motion segment subjected to pure sagittal plane moments. J Biomech, 1986, 19(4): 331-350.
[16]
16. Grant J P, Oxland T R, Dvorak M F. Mapping the structural properties of the lumbosacral vertebral endplates. Spine (Phila Pa 1976), 2001, 26(8): 889-896.
[17]
17. Yamada H, Evans F G. Strength of biological materials. Williams&Wilkins, Baltimore, 1970.
[18]
18. Morgan F R. The mechanical properties of collagen fibres:stress-strain curves. J Soc Leather Trades Chemists , 1960, 44: 170-179.
[19]
19. Périé D, Korda D, Iatridis J C. Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability. J Biomech, 2005, 38(11): 2164-2171.
[20]
20. Little J S, Khalsa P S. Material properties of the human lumbar facet joint capsule. J Biomech Eng, 2005, 127(1): 15-24.
[21]
21. Elder B D, Vigneswaran K, Athanasiou K A, et al. Biomechanical, biochemical, and histological characterization of canine lumbar facet joint cartilage. J Neurosurg Spine, 2009, 10(6): 623-628.
[22]
22. Benneker L M, Heini P F, Anderson S E, et al. Correlation of radiographic and MRI parameters to morphological and biochemical assessment of intervertebral disc degeneration. Eur Spine J, 2005, 14(1): 27-35.
[23]
23. Iatridis J C, Setton L A, Foster R J, et al. Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression. J Biomech, 1998, 31(6): 535-544.
[24]
24. Ashman R B, Cowin S C, van Buskirk W C, et al. A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech, 1984, 17(5): 349-361.
[25]
25. Keaveny T M, Hayes W C. A 20-year perspective on the mechanical properties of trabecular bone. J Biomech Eng, 1993, 115(4B): 534-542.
[26]
26. Wilke H J, Wenger K, Claes L. Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J, 1998, 7(2): 148-154.