全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

脊椎段老龄化对椎骨皮质骨力学行为的影响分析

DOI: doi:10.7507/1001-5515.201608050

Keywords: 有限元分析, 脊椎, 老龄化, 皮质骨应变, 应变测量

Full-Text   Cite this paper   Add to My Lib

Abstract:

椎骨皮质骨的断裂风险会随着年龄的增加而增大,然而目前老龄化对皮质骨断裂影响的机制尚不明确。本文的研究目的是探明脊椎段老龄化对皮质骨应变的影响规律。文中建立了 2 种不同程度老龄化(中度老龄化和完全老龄化)的有限元脊椎段模型,这些老龄化的脊椎段模型是通过改变椎间盘的几何形状和脊椎各组成部分的材料属性生成的,然后将它们与作者之前研究中的一个健康脊椎段有限元模型进行了对比。为了研究哪一种情况对皮质骨的应变影响更大,本文分别建立了两种有限元模型比较方式:一种只改变脊椎材料属性,另一种只改变椎间盘的几何形状。研究结果表明,皮质骨的应变随着老龄化而增大;相比于椎间盘几何形状改变,脊椎材料属性的改变对皮质骨应变的影响更大。本研究结果或可说明,对于预防和治疗椎骨皮质骨断裂,增强脊椎强度是更有效的方式

References

[1]  1. Rockoff S D, Sweet E, Bleustein J. The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res, 1969, 3(2): 163-175.
[2]  2. Cao K D, Grimm M J, Yang K H. Load sharing within a human lumbar vertebral body using the finite element method. Spine (Phila Pa 1976), 2001, 26(12): E253-E260.
[3]  3. Frobin W, Brinckmann P, Kramer M, et al. Height of lumbar discs measured from radiographs compared with degeneration and height classified from Mr images. Eur Radiol, 2001, 11(2): 263-269.
[4]  4. Adams M A, Mcnally D S, Dolan P. 'Stress' distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br, 1996, 78(6): 965-972.
[5]  5. Kayanja M M, Ferrara L A, Lieberman I H. Distribution of anterior cortical shear strain after a thoracic wedge compression fracture. Spine J, 2004, 4(1): 76-87.
[6]  6. Polikeit A, Nolte L P, Ferguson S J. Simulated influence of osteoporosis and disc degeneration on the load transfer in a lumbar functional spinal unit. J Biomech, 2004, 37(7): 1061-1069.
[7]  7. Ruberté L M, Natarajan R N, Andersson G B. Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments--a finite element model study. J Biomech, 2009, 42(3): 341-348.
[8]  8. Kurutz M, Oroszváry L. Finite element analysis of weightbath hydrotraction treatment of degenerated lumbar spine segments in elastic phase. J Biomech, 2010, 43(3): 433-441.
[9]  9. 张健, 樊瑜波. 组合式颈椎段整体三维有限元模型的建立. 四川大学学报: 工程科学版, 2007, 39(2): 72-76.
[10]  10. 邓真, 王辉昊, 牛文鑫, 等. 正常人下颈椎 C_(4-7) 节段三维有限元模型的建立与验证. 生物医学工程学杂志, 2016(04): 652-658.
[11]  11. Lu Yongtao, Rosenau E, Paetzold H, et al. Strain changes on the cortical shell of vertebral bodies due to spine ageing: a parametric study using a finite element model evaluated by strain measurements. Proc Inst Mech Eng H, 2013, 227(12): 1265-1274.
[12]  12. Rohlmann A, Zander T, Schmidt H, et al. Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. J Biomech, 2006, 39(13): 2484-2490.
[13]  13. Burstein A H, Reilly D T, Martens m. Aging of bone tissue - mechanical-properties. J Bone Joint Surg Am, 1976, 58(1): 82-86.
[14]  14. Lindahl O. Mechanical properties of dried defatted spongy bone. Acta Orthop Scand, 1976, 47(1): 11-19.
[15]  15. Shiraziadl A, Ahmed A M, Shrivastava S C. A finite-element study of a lumbar motion segment subjected to pure sagittal plane moments. J Biomech, 1986, 19(4): 331-350.
[16]  16. Grant J P, Oxland T R, Dvorak M F. Mapping the structural properties of the lumbosacral vertebral endplates. Spine (Phila Pa 1976), 2001, 26(8): 889-896.
[17]  17. Yamada H, Evans F G. Strength of biological materials. Williams&Wilkins, Baltimore, 1970.
[18]  18. Morgan F R. The mechanical properties of collagen fibres:stress-strain curves. J Soc Leather Trades Chemists , 1960, 44: 170-179.
[19]  19. Périé D, Korda D, Iatridis J C. Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability. J Biomech, 2005, 38(11): 2164-2171.
[20]  20. Little J S, Khalsa P S. Material properties of the human lumbar facet joint capsule. J Biomech Eng, 2005, 127(1): 15-24.
[21]  21. Elder B D, Vigneswaran K, Athanasiou K A, et al. Biomechanical, biochemical, and histological characterization of canine lumbar facet joint cartilage. J Neurosurg Spine, 2009, 10(6): 623-628.
[22]  22. Benneker L M, Heini P F, Anderson S E, et al. Correlation of radiographic and MRI parameters to morphological and biochemical assessment of intervertebral disc degeneration. Eur Spine J, 2005, 14(1): 27-35.
[23]  23. Iatridis J C, Setton L A, Foster R J, et al. Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression. J Biomech, 1998, 31(6): 535-544.
[24]  24. Ashman R B, Cowin S C, van Buskirk W C, et al. A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech, 1984, 17(5): 349-361.
[25]  25. Keaveny T M, Hayes W C. A 20-year perspective on the mechanical properties of trabecular bone. J Biomech Eng, 1993, 115(4B): 534-542.
[26]  26. Wilke H J, Wenger K, Claes L. Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J, 1998, 7(2): 148-154.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133