全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于小波多尺度分析和极限学习机的癫痫脑电分类算法

DOI: doi:10.7507/1001-5515.20160165

Keywords: 小波多尺度分析, Hurst指数, 样本熵, 癫痫脑电, 极限学习机

Full-Text   Cite this paper   Add to My Lib

Abstract:

癫痫脑电的自动分类对于癫痫的诊断和治疗具有重要意义。本文提出了一种基于小波多尺度分析和极限学习机的癫痫脑电分类方法。首先,利用小波多尺度分析对原始脑电信号进行多尺度分解,提取出不同频段的脑电信号。然后采用Hurst指数和样本熵两种非线性方法对原始脑电信号和小波多尺度分解得到的不同频段脑电信号进行特征提取。最后,将得到的特征向量输入到极限学习机中,实现癫痫脑电分类的目的。本文采用的方法在区分癫痫发作期和发作间期时取得了99.5%的分类准确率。结果表明,本方法在癫痫的诊断和治疗中具有很好的应用前景

References

[1]  2. FISHER R S, BOAS W V, BLUME W, et al. Epileptic seizures and epilepsy: Definitions proposed by the International League against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE)[J]. Epilepsia, 2005, 46(4): 470-472.
[2]  3. 周昌贵. 脑电图诊断要点[J].现代电生理学杂志,2004,11(3):165-184.
[3]  1. ?IASEMIDIS L D. Epileptic seizure prediction and control[J]. IEEE Trans Biomed Eng, 2003, 50(5): 549-558.
[4]  13. CHISCI L, MAVINO A, PERFERI G, et al. Real-time epileptic seizure prediction using AR models and support vector machines[J]. IEEE Trans Biomed Eng, 2010, 57(5): 1124-1132.
[5]  14. KUMAR Y, DEWAL M L, ANAND R S. Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine[J]. Neurocomputing, 2014, 133(8): 271-279.
[6]  15. 朱天桥, 黄力宇.单导癫痫脑电模糊特征提取的支持向量机发作预测[J].仪器仪表学报,2010,31(11):2434-2439.
[7]  16. HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/3): 489-501.
[8]  4. LAI Y C, OSORIO I, FREI M G, et al. Computational neuroscience in epilepsy[M]. San Diego: Academic Press, 2008.
[9]  5. YUAN Qi, ZHOU Weidong, LI Shufang, et al. Epileptic EEG classification based on extreme learning machine and nonlinear features[J]. Epilepsy Res, 2011, 96(1/2): 29-38.
[10]  6. GUO Ling, RIVERO D, PAZOS A. Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks[J]. J Neurosci Methods, 2010, 193(1): 156-163.
[11]  7. YUAN Qi, ZHOU Weidong, LIU Yinxia, et al. Epileptic seizure detection with linear and nonlinear features[J]. Epilepsy Behav, 2012, 24(4): 415-421.
[12]  8. JOUNY C C, BERGEY G K. Characterization of early partial seizure onset: frequency, complexity and entropy[J]. Clin Neurophysiol, 2012, 123(4): 658-669.
[13]  9. KUMAR S P, SRIRAAM N, BENAKOP P G, et al. Entropies based detection of epileptic seizures with artificial neural network classifiers[J]. Expert Syst Appl, 2010, 37(4): 3284-3291.
[14]  10. VIDYASAGAR K E C, MOGHAVVEMI M, PRABHAT T S S T. Performance evaluation of contemporary classifiers for automatic detection of epileptic EEG[C]//IEEE International Conference on Industrial Instrumentation and Control (ICIC). Pune: IEEE, 2015: 372-377.
[15]  11. SOOD M, BHOOSHAN S V. Automatic processing of EEG signals for seizure detection using soft computing techniques[C]//IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014). Jaipur: IEEE, 2014: 1-6.
[16]  12. KOVACS P, SAMIEE K, GABBOUJ M. On application of rational discrete short time Fourier transform in epileptic seizure classification[C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-2014). Florence: IEEE, 2014: 5839-5843.
[17]  17. ABRY P, CHAINAIS P, COUTIN L, et al. Multifractal random walks as fractional wiener integrals[J]. IEEE Transactions on Information Theory, 2009, 55(8): 3825-3846.
[18]  18. RICHMAN J S, MOORMAN J R. Physiological time-series analysis using approximate entropy and sample entropy[J]. Am J Physiol Heart Circ Physiol, 2000, 278(6): H2039-H2049.
[19]  19. 蔡冬梅, 周卫东,刘凯,等.基于Hurst指数和SVM的癫痫脑电检测方法[J].中国生物医学工程学报,2010,29(6):836-840.
[20]  20. 徐永红, 李杏杏,赵勇.基于小波包和多元多尺度熵的癫痫脑电信号分类方法[J].生物医学工程学杂志,2013,30(5):1073-1078.
[21]  21. 袁琦, 周卫东,李淑芳,等.基于ELM和近似熵的脑电信号检测方法[J].仪器仪表学报,2012,33(3):514-519.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133