全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于通用赤池信息量准则改进维纳-格兰杰因果索引算法的颅内脑电效应连通性研究

DOI: doi:10.7507/1001-5515.201709032

Keywords: 因果索引, 赤池信息量准则, 基于生理学的模型, 癫痫, 大脑连通性

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文的目标是处理并分析使用深度电极在难治性癫痫患者癫痫发作期间其大脑皮层中记录到的癫痫脑电信号间的大脑效应连通性。维纳-格兰杰因果索引算法是一种众所周知的检测脑电信号间大脑效应连通性的有效方法。它是一种基于线性自回归模型的方法,而模型参数估计问题在其用于脑电因果效应连通性研究中的计算准确性与鲁棒性方面起着至关重要的作用。本文针对这一问题,使用了我们提出的改进的赤池信息量准则来估计算法中自回归模型的模型阶数,以提高维纳-格兰杰因果索引算法检测大脑效应连通性的性能。实验仿真结果表明:不管是在线性随机系统中还是在能生成模拟癫痫信号的生理模型中,该改进的维纳-格兰杰因果索引算法在检测脑效应连通性上都表现出良好的鲁棒性

References

[1]  1. Engel J Jr. Outcome with respect to epileptic seizures. Surgical Treatment of the Epilepsies, 1993: 609-621.
[2]  2. Ansari-Asl K, Senhadji L, Bellanger J J, et al. Quantitative evaluation of linear and nonlinear methods characterizing interdependencies between brain signals. Phys Rev E Stat Nonlin Soft Matter Phys, 2006, 74(3 Pt 1): 031916.
[3]  3. Wiener N. The theory of prediction. Modern Mathematics for Engineers, 1956: 125-139.
[4]  4. Granger C W. Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 1969, 37(3): 424-438.
[5]  5. Kayser A S, Sun F T, D'Esposito M. A comparison of Granger causality and coherency in fMRI-based analysis of the motor system. Hum Brain Mapp, 2009, 30(11): 3475-3494.
[6]  6. Cadotte A J, DeMarse T B, Mareci T H, et al. Granger causality relationships between local field potentials in an animal model of temporal lobe epilepsy. J Neurosci Methods, 2010, 189(1): 121-129.
[7]  7. Bressler S L, Seth A K. Wiener-Granger causality: a well established methodology. Neuroimage, 2011, 58(2): 323-329.
[8]  8. Akaike H. Information theory and an extension of the maximum likelihood principle//Petrov B N, Caski F. Proceedings of the Second International Symposium on Information Theory. Budapest: Akademiai Kiado, 1973: 267-281.
[9]  9. Yang Chunfeng, Le Bouquin Jeannes R, Bellanger J J, et al. A new strategy for model order identification and its application to transfer entropy for EEG signals analysis. IEEE Trans Biomed Eng, 2013, 60(5): 1318-1327.
[10]  10. Kariya T, Kurata H. Generalized least squares. Chichester: John Wiley & Sons, 2004.
[11]  11. Wendling F, Bellanger J J, Bartolomei F, et al. Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biol Cybern, 2000, 83(4): 367-378.
[12]  12. Wendling F, Hernandez A, Bellanger J J, et al. Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG. J Clin Neurophysiol, 2005, 22(5): 343-356.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133