1. Haldorsen I S, Espeland A, Larsson E M. Central nervous system lymphoma: characteristic findings on traditional and advanced imaging. AJNR Am J Neuroradiol, 2011, 32(6): 984-992.
[2]
2. Toh C H, Castillo M, Wong A M, et al. Primary cerebral lymphoma and glioblastoma multiforme: differences in diffusion characteristics evaluated with diffusion tensor imaging. AJNR Am J Neuroradiol, 2008, 29(3): 471-475.
[3]
3. Al-Okaili R N, Krejza J, Woo J H, et al. Intraaxial brain masses: MR imaging-based diagnostic strategy--initial experience. Radiology, 2007, 243(2): 539-550.
[4]
4. Xing Z, You R X, Li J, et al. Differentiation of primary central nervous system lymphomas from high-grade gliomas by rCBV and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Clin Neuroradiol, 2014, 24(4): 329-336.
[5]
5. Kickingereder P, Wiestler B, Sahm F, et al. Primary central nervous system lymphoma and atypical glioblastoma: multiparametric differentiation by using diffusion-, perfusion-, and susceptibility-weighted MR imaging. Radiology, 2014, 272(3): 843-850.
[6]
6. Ahn S J, Shin H J, Chang J H, et al. Differentiation between primary cerebral lymphoma and glioblastoma using the apparent diffusion coefficient: comparison of three different ROI methods. PLoS One, 2014, 9(11): e112948.
[7]
7. Nakajima S, Okada T, Yamamoto A, et al. Differentiation between primary central nervous system lymphoma and glioblastoma: a comparative study of parameters derived from dynamic susceptibility contrast-enhanced perfusion-weighted MRI. Clin Radiol, 2015, 70(12): 1393-1399.
[8]
8. Gillies R J, Kinahan P E, Hricak H. Radiomics: images are more than pictures, they are data. Radiology, 2016, 278(2): 563-577.
[9]
9. Aerts H J, Velazquez E R, Leijenaar R T, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun, 2014, 5: 4006.
[10]
10. Yu J, Shi Z, Lian Y, et al. Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade Ⅱ glioma. Eur Radiol, 2017, 27(8): 3509-3522.
[11]
11. Wu Weimiao, Parmar C, Grossmann P, et al. Exploratory study to identify radiomics classifiers for lung cancer histology. Front Oncol, 2016, 6(Suppl 2): 71.
[12]
12. Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process, 2006, 15(12): 3736-3745.
[13]
13. Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell, 2009, 31(2): 210-227.
[14]
14. Li Yuanqing, Namburi P, Yu Zhuliang, et al. Voxel selection in fMRI data analysis based on sparse representation. IEEE Trans Biomed Eng, 2009, 56(10): 2439-2451.
[15]
15. Pereira S, Pinto A, Alves V, et al. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging, 2016, 35(5): 1240-1251.
[16]
16. Nouretdinov I, Costafreda S G, Gammerman A, et al. Machine learning classification with confidence: application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression. Neuroimage, 2011, 56(2): 809-813.
[17]
17. Choi Y S, Lee H J, Ahn S S, et al. Primary central nervous system lymphoma and atypical glioblastoma: differentiation using the initial area under the curve derived from dynamic contrast-enhanced MR and the apparent diffusion coefficient. Eur Radiol, 2017, 27(4): 1344-1351.