1. Boksem M A S, Tops M. Mental fatigue: Costs and benefits. Brain Res Rev, 2008, 59(1): 125-139.
[2]
2. Boksem M A S, Meijman T F, Lorist M M. Effects of mental fatigue on attention: An ERP study. Cogn Brain Res, 2005, 25(1): 107-116.
[3]
3. Boksem M A S, Kostermans E, Tops M, et al. Individual differences in asymmetric resting-state frontal cortical activity modulate ERPs and performance in a global-local attention task. J Psychophysiol, 2012, 26(2): 51-62.
5. Jirsa V, Müller V. Cross-frequency coupling in real and virtual brain networks. Front Comput Neurosci, 2013, 7(78): 78-103.
[6]
6. Liu Jianping, Zhang Chong, Zheng Chongxun. EEG-based estimation of mental fatigue by using KPCA-HMM and complexity parameters. Biomed Signal Process Control, 2010, 5(2): 124-130.
[7]
7. K?thner I, Wriessnegger S C, Müller-Putz G R, et al. Effects of mental workload and fatigue on the P300, alpha and theta band power during operation of an ERP (P300) brain-computer interface. Biol Psychol, 2014, 102(5): 118-129.
9. Saleh M, Reimer J, Penn R, et al. Fast and slow oscillations in human primary motor cortex predict oncoming behaviorally relevant cues. Neuron, 2010, 65(4): 461-471.
[10]
10. Besle J, Lakatos P, Schevon C A, et al. Entrainment of neuronal oscillations as a mechanism of attentional selection. Science, 2008, 320(5872): 110-113.
[11]
11. Holz E M, Glennon M, Prendergast K, et al. Theta-gamma phase synchronization during memory matching in visual working memory. Neuroimage, 2010, 52(1): 326-335.
[12]
12. Lisman J E, Jensen O. The theta-gamma neural code. Neuron, 2013, 77(6): 1002-1016.
[13]
13. Belluscio M A, Mizuseki K, Schmidt R A, et al. Cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. J Neurosci, 2012, 32(2): 423-435.
[14]
14. Tort A B, Kramer M A, Thorn C, et al. Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc Natl Acad Sci U S A, 2008, 105(51): 20517-20522.
[15]
15. Pahor A, Jau?ovec N. Theta–gamma cross-frequency coupling relates to the level of human intelligence. Intelligence, 2014, 46: 283-290.
[16]
16. Foster B L, Parvizi J. Resting oscillations and cross-frequency coupling in the human posteromedial cortex. Neuroimage, 2012, 60(1): 384-391.
[17]
17. Axmacher N, Henseler M M, Jensen O, et al. Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc Natl Acad Sci U S A, 2010, 107(7): 3228-3233.
[18]
18. Cohen M X, Elger C E, Fell J. Oscillatory activity and phase-amplitude coupling in the human medial frontal cortex during decision making. J Cogn Neurosci, 2009, 21(2): 390-402.
[19]
19. Canolty R T, Knight R T. The functional role of cross-frequency coupling. Trends Cogn Sci, 2010, 14(11): 506-515.
[20]
20. Kendrick K M, Zhan Yang, Fischer H, et al. Learning alters theta amplitude, theta-gamma coupling and neuronal synchronization in inferotemporal cortex. BMC Neurosci, 2011, 12(1): 55-78.
22. Mormann F, Fell J, Axmacher N, et al. Phase/amplitude reset and theta-gamma interaction in the human medial temporal lobe during a continuous word recognition memory task. Hippocampus, 2005, 15(7): 890-900.
[23]
23. Tort A B, Komorowski R W, Manns J R, et al. Theta-gamma coupling increases during the learning of item-context associations. Proc Natl Acad Sci U S A, 2009, 106(49): 20942-20947.
[24]
24. van der Linden D, Frese M, Meijman T F. Mental fatigue and the control of cognitive processes: effects on perseveration and planning. Acta Psychol (Amst), 2003, 113(1): 45-65.
26. Antonakakis M, Dimitriadis S I, Zervakis M, et al. Altered cross-frequency coupling in resting-state MEG after mild traumatic brain injury. Int J Psychophysiol, 2016, 102: 1-11.
[27]
27. Sun Y, Giacobbe P, Tang C W, et al. Deep brain stimulation modulates gamma oscillations and theta-gamma coupling in treatment resistant depression. Brain Stimul, 2015, 8(6): 1033-1042.