全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

利用基因表达值相对大小秩序标志鉴别肺癌

DOI: doi:10.7507/1001-5515.201608002

Keywords: 标志, 分类器, 肺癌, 数据标准化, 批次效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

在应用基于转录组特征构建的支持向量机、贝叶斯分类器等传统分类器对组织样本进行分类时,要求对基因表达谱进行样本间的数据标准化处理,以去除实验批次效应带来的影响,因此限制了这些分类器在个体化水平上的应用。本文旨在构建鉴别肺癌组织与非癌(肺炎与肺正常)组织的个体化分类器。文中采用来自多组独立数据的 197 例肺癌与 189 例肺非癌组织样本作为训练集,筛选得到了 3 对基因作为特征,应用多数投票规则区分肺癌组织与肺非癌组织的平均准确率达到 95.34%。然后,本文采用来自多组独立数据的 251 例肺癌组织与 141 例肺非癌组织样本的非标化数据进行独立验证,其平均准确率达到 96.78%。因此,本文提出的该分类器可对由不同实验室检测的样本进行个体化判断提供一种新的思路,具有较强的临床实用性

References

[1]  1. Gabere M, Hussein M, Aziz M. Filtered selection coupled with support vector machines generate a functionally relevant prediction model for colorectal cancer. Onco Targets Ther, 2016, 9: 3313-3325.
[2]  2. García-Bilbao A, Arma?anzas R, Ispizua Z, et al. Identification of a biomarker panel for colorectal cancer diagnosis. BMC Cancer, 2012, 12: 43.
[3]  3. Yang Z, Zhuan B, Yan Y, et al. Identification of gene markers in the development of smoking-induced lung cancer. Gene, 2016, 576(1 Pt 3): 451-457.
[4]  4. Podolsky M, Barchuk A, Kuznetcov V, et al. Evaluation of machine learning algorithm utilization for lung cancer classification based on gene expression levels. Asian Pac J Cancer Prev, 2016, 17(2): 835-838.
[5]  5. Panebianco F, Mazzanti C, Tomei S, et al. The combination of four molecular markers improves thyroid cancer cytologic diagnosis and patient management. BMC Cancer, 2015, 15: 918.
[6]  6. Motawi T, Sadik N, Shaker O, et al. Study of microRNAs-21/221 as potential breast cancer biomarkers in Egyptian women. Gene, 2016, 590(2): 210-219.
[7]  7. Johnson W, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 2007, 8(1): 118-127.
[8]  8. Leek J, Scharpf R, Bravo H, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet, 2010, 11(10): 733-739.
[9]  9. Benito M, Parker J, Du Q, et al. Adjustment of systematic microarray data biases. Bioinformatics, 2004, 20(1): 105-114.
[10]  10. Lau S, Boutros P, Pintilie M, et al. Three-gene prognostic classifier for early-stage non small-cell lung cancer. J Clin Oncol, 2007, 25(35): 5562-5569.
[11]  11. Shabalin A, Tjelmeland H, Fan C, et al. Merging two gene-expression studies via cross-platform normalization. Bioinfor-matics, 2008, 24(9): 1154-1160.
[12]  12. Wang D, Cheng L, Zhang Y, et al. Extensive up-regulation of gene expression in cancer: the normalised use of microarray data. Mol Biosyst, 2012, 8(3): 818-827.
[13]  13. Tomlins S A, Rhodes D R, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science, 2005, 310(5748): 644-648.
[14]  14. Zhou X, Shi T, Li B, et al. Genes dysregulated to different extent or oppositely in estrogen receptor-positive and estrogen receptor-negative breast cancers. PLoS One, 2013, 8(7): e70017.
[15]  15. Wang H, Sun Q, Zhao W, et al. Individual-level analysis of differential expression of genes and pathways for personalized medicine. Bioinformatics, 2015, 31(1): 62-68.
[16]  16. Geman D, d'avignon C, Naiman D, et al. Classifying gene expression profiles from pairwise mRNA comparisons. Stat Appl Genet Mol Biol, 2004, 3: Article19.
[17]  17. Afsari B, Fertig E, Geman D, et al. switchBox: an R package for k-Top scoring pairs classifier development. Bioinformatics, 2015, 31(2): 273-274.
[18]  18. Eddy J, Sung J, Geman D, et al. Relative expression analysis for molecular cancer diagnosis and prognosis. Technol Cancer Res Treat, 2010, 9(2): 149-159.
[19]  19. Kim S, Lin C, Tseng G. MetaKTSP: a meta-analytic top scoring pair method for robust cross-study validation of omics prediction analysis. Bioinformatics, 2016, 32(13): 1966-1973.
[20]  20. Lin X, Gao J, Zhou L, et al. A modified k-TSP algorithm and its application in LC-MS-based metabolomics study of hepatocellular carcinoma and chronic liver diseases. J Chromatogr B Analyt Technol Biomed Life Sci, 2014, 966: 100-108.
[21]  21. Nixon A, Pang H, Starr M, et al. Prognostic and predictive blood-based biomarkers in patients with advanced pancreatic cancer: results from CALGB80303(Alliance) Clin Cancer Res, 2013, 19(24): 6957-6966.
[22]  22. Irizarry R A, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 2003, 4(2): 249-264.
[23]  23. dey Sarkar S, Goswami S, Agarwal A, et al. A novel feature selection technique for text classification using na?ve bayes. International scholarly research notices, 2014: 717092.
[24]  24. Li J, Wang Y, Wang L, et al. MatPred: computational identification of mature MicroRNAs within novel Pre-MicroRNAs. Biomed Res Int, 2015: 546763.
[25]  25. Hu J, Xu J. Density based pruning for identification of differentially expressed genes from microarray data. BMC Genomics, 2010, 11(Suppl 2): S3.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133