1. Gabere M, Hussein M, Aziz M. Filtered selection coupled with support vector machines generate a functionally relevant prediction model for colorectal cancer. Onco Targets Ther, 2016, 9: 3313-3325.
[2]
2. García-Bilbao A, Arma?anzas R, Ispizua Z, et al. Identification of a biomarker panel for colorectal cancer diagnosis. BMC Cancer, 2012, 12: 43.
[3]
3. Yang Z, Zhuan B, Yan Y, et al. Identification of gene markers in the development of smoking-induced lung cancer. Gene, 2016, 576(1 Pt 3): 451-457.
[4]
4. Podolsky M, Barchuk A, Kuznetcov V, et al. Evaluation of machine learning algorithm utilization for lung cancer classification based on gene expression levels. Asian Pac J Cancer Prev, 2016, 17(2): 835-838.
[5]
5. Panebianco F, Mazzanti C, Tomei S, et al. The combination of four molecular markers improves thyroid cancer cytologic diagnosis and patient management. BMC Cancer, 2015, 15: 918.
[6]
6. Motawi T, Sadik N, Shaker O, et al. Study of microRNAs-21/221 as potential breast cancer biomarkers in Egyptian women. Gene, 2016, 590(2): 210-219.
[7]
7. Johnson W, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 2007, 8(1): 118-127.
[8]
8. Leek J, Scharpf R, Bravo H, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet, 2010, 11(10): 733-739.
[9]
9. Benito M, Parker J, Du Q, et al. Adjustment of systematic microarray data biases. Bioinformatics, 2004, 20(1): 105-114.
[10]
10. Lau S, Boutros P, Pintilie M, et al. Three-gene prognostic classifier for early-stage non small-cell lung cancer. J Clin Oncol, 2007, 25(35): 5562-5569.
[11]
11. Shabalin A, Tjelmeland H, Fan C, et al. Merging two gene-expression studies via cross-platform normalization. Bioinfor-matics, 2008, 24(9): 1154-1160.
[12]
12. Wang D, Cheng L, Zhang Y, et al. Extensive up-regulation of gene expression in cancer: the normalised use of microarray data. Mol Biosyst, 2012, 8(3): 818-827.
[13]
13. Tomlins S A, Rhodes D R, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science, 2005, 310(5748): 644-648.
[14]
14. Zhou X, Shi T, Li B, et al. Genes dysregulated to different extent or oppositely in estrogen receptor-positive and estrogen receptor-negative breast cancers. PLoS One, 2013, 8(7): e70017.
[15]
15. Wang H, Sun Q, Zhao W, et al. Individual-level analysis of differential expression of genes and pathways for personalized medicine. Bioinformatics, 2015, 31(1): 62-68.
[16]
16. Geman D, d'avignon C, Naiman D, et al. Classifying gene expression profiles from pairwise mRNA comparisons. Stat Appl Genet Mol Biol, 2004, 3: Article19.
[17]
17. Afsari B, Fertig E, Geman D, et al. switchBox: an R package for k-Top scoring pairs classifier development. Bioinformatics, 2015, 31(2): 273-274.
[18]
18. Eddy J, Sung J, Geman D, et al. Relative expression analysis for molecular cancer diagnosis and prognosis. Technol Cancer Res Treat, 2010, 9(2): 149-159.
[19]
19. Kim S, Lin C, Tseng G. MetaKTSP: a meta-analytic top scoring pair method for robust cross-study validation of omics prediction analysis. Bioinformatics, 2016, 32(13): 1966-1973.
[20]
20. Lin X, Gao J, Zhou L, et al. A modified k-TSP algorithm and its application in LC-MS-based metabolomics study of hepatocellular carcinoma and chronic liver diseases. J Chromatogr B Analyt Technol Biomed Life Sci, 2014, 966: 100-108.
[21]
21. Nixon A, Pang H, Starr M, et al. Prognostic and predictive blood-based biomarkers in patients with advanced pancreatic cancer: results from CALGB80303(Alliance) Clin Cancer Res, 2013, 19(24): 6957-6966.
[22]
22. Irizarry R A, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 2003, 4(2): 249-264.
[23]
23. dey Sarkar S, Goswami S, Agarwal A, et al. A novel feature selection technique for text classification using na?ve bayes. International scholarly research notices, 2014: 717092.
[24]
24. Li J, Wang Y, Wang L, et al. MatPred: computational identification of mature MicroRNAs within novel Pre-MicroRNAs. Biomed Res Int, 2015: 546763.
[25]
25. Hu J, Xu J. Density based pruning for identification of differentially expressed genes from microarray data. BMC Genomics, 2010, 11(Suppl 2): S3.