全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于钙钟的窦房结二维组织建模及定量分析

DOI: doi:10.7507/1001-5515.20160183

Keywords: 窦房结, 钙钟, 膜钟, 细胞动力学模型, 定量电生理

Full-Text   Cite this paper   Add to My Lib

Abstract:

窦房结钙、膜钟控制自律性的新机制为揭示窦性心律失常提供了帮助,但目前钙钟动力学模型仅处于单细胞水平。本文构建了窦房结中心和边缘的单细胞模型,并按照指数形式改变中心到边缘细胞的膜电容、大小、电导及细胞间偶联电导,根据解剖结构构建了窦房结和心房二维非匀质模型。采用五点差分和有限元方法分别对组织内细胞网格和边界进行处理。通过分段构造试函数的方法确定不规则的组织边界。定量实验表明,构建的中心和边缘单细胞模型的动作电位在幅度、周期、最大舒张期电位以及上升速率等方面符合相关报道。钙钟和膜钟对主导起搏位置和除极速率的作用以及房性早搏对窦房结自律性的影响等定量研究也符合相关实验研究。本模型为深入探讨钙、膜钟在窦房结自律性中的相对作用以及与心房电活动的关系提供了帮助,同时可为构建三维窦房结和心房器官模型等奠定基础

References

[1]  3. CHEN Pengsheng, JOUNG B, SHINOHARA T, et al. The initiation of the heart beat[J]. Circ J, 2010, 74(2): 221-225.
[2]  4. ZHANG Hong, JOUNG B, SHINOHARA T, et al. Synergistic dual automaticity in sinoatrial node cell and tissue models[J]. Circ J, 2010, 74(10): 2079-2088.
[3]  5. MALTSEV V A, LAKATTA E G. Cardiac pacemaker cell failure with preserved I(f), I(CaL), and I(Kr): a lesson about pacemaker function learned from ischemia-induced bradycardia[J]. J Mol Cell Cardiol, 2007, 42(2): 289-294.
[4]  6. ZHANG H, HOLDEN A V, KODAMA I, et al. Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node[J]. Am J Physiol Heart Circ Physiol, 2000, 279(1): H397-H421.
[5]  1. ZHANG Henggui, BUTTERS T, ADENIRAN I, et al. Modeling the chronotropic effect of isoprenaline on rabbit sinoatrial node[J]. Front Physiol, 2012, 3(1): 241.
[6]  2. KURATA Y, HISATOME I, SHIBAMOTO T. Roles of sarcoplasmic reticulum Ca2+ cycling and Na+/Ca2+ exchanger in sinoatrial node pacemaking: insights from bifurcation analysis of mathematical models[J]. Am J Physiol Heart Circ Physiol, 2012, 302(11): H2285-H2300.
[7]  7. MALTSEV V A, LAKATTA E G. Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model[J]. Am J Physiol Heart Circ Physiol, 2009, 296(3): H594-H615.
[8]  8. ZAZA A, MICHELETTI M, BRIOSCHI A, et al. Ionic currents during sustained pacemaker activity in rabbit sino-atrial myocytes[J]. J Physiol, 1997, 505(Pt 3): 677-688.
[9]  9. ZHANG H, BOYETT M R, HOLDEN A V, et al. Evidence that the Na+ current, iNa, in the periphery of the sinoatrial node helps the node to drive the surrounding atrial muscle[J]. J Physiol(Lond), 1998, 506(1): 54P-55P.
[10]  10. ZHANG H, HOLDEN A V, BOYETT M R. Gradient model versus Mosaic model of the sinoatrial node[J]. Circulation, 2001, 103(4): 584-588.
[11]  11. GARNY A, KOHL P, HUNTER P J, et al. One-dimensional rabbit sinoatrial node models: benefits and limitations[J]. J Cardiovasc Electrophysiol, 2003, 14(10 Suppl): S121-S132.
[12]  12. DOBRZYNSKI H, LI J, TELLEZ J, et al. Computer three-dimensional Reconstruction of the sinoatrial node[J]. Circulation, 2005, 111(7): 846-854.
[13]  13. 曾攀. 有限元分析及应用[M].北京:清华大学出版社,2004:1-466.
[14]  14. JOUNG B, TANG Liang, MARUYAMA M, et al. Intracellular calcium dynamics and acceleration of sinus rhythm by beta-adrenergic stimulation[J]. Circulation, 2009, 119(6): 788-796.
[15]  15. ZHAO Jun, LIU Tong, LI Guangping. Relationship between two arrhythmias: sinus node dysfunction and atrial fibrillation[J]. Arch Med Res, 2014, 45(4): 351-355.
[16]  16. STEINBECK G, ALLESSIE M A, BONKE F I, et al. Sinus node response to premature atrial stimulation in the rabbit studied with multiple microelectrode impalements[J]. Circ Res, 1978, 43(5): 695-704.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133