全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

轻度认知障碍的全脑网络研究进展:来自图论的证据

DOI: doi:10.7507/1001-5515.201603074

Keywords: 轻度认知障碍, 图论分析, 脑结构网络, 脑功能网络, 小世界属性

Full-Text   Cite this paper   Add to My Lib

Abstract:

轻度认知障碍是介于年龄相关的认知功能减退和痴呆间的一种临床状态。随着神经影像和神经生理学技术的发展,研究者可以无创地获取人脑的结构和功能信息,并利用复杂网络理论构建脑网络。基于图论的研究表明,轻度认知障碍患者在大尺度上具有小世界属性,但网络拓扑结构失调,而这种失调与认知功能显著相关,且网络属性介于阿尔茨海默病和正常被试之间。本文从多模态数据角度回顾了基于复杂网络的轻度认知障碍脑连接的最新进展,着重其全脑结构、功能网络失调及联合协变失调的图论证据,并提出目前发展的限制和未来研究方向

References

[1]  1. ?Prince M, Wimo A, Guerchet M, et al. World Alzheimer Report 2015: The Global Impact of Dementia. London: Alzheimer's Disease International, 2015.
[2]  2. Lopez O L. Mild cognitive impairment. Continuum (Minneap Minn), 2013, 19(2): 411-424.
[3]  3. He Yong, Chen Zhang, Evans A. Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease. J Neurosci, 2008, 28(18): 4756-4766.
[4]  4. Fornito A, Zalesky A, Breakspear M. Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage, 2013, 80: 426-444.
[5]  5. Sun F T, Miller L M, D'Esposito M. Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data. Neuroimage, 2004, 21(2): 647-658.
[6]  6. Lerch J P, Worsley K, Shaw W P, et al. Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. Neuroimage, 2006, 31(3): 993-1003.
[7]  7. Gong Gaolang, He Yong, Concha L, et al. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex, 2009, 19(3): 524-536.
[8]  8. Humphries M D, Gurney K. Network 'small-world-ness': a quantitative method for determining canonical network equivalence. PLoS One, 2008, 3(4): e0002051.
[9]  9. Irimia A, Van Horn J D. The structural, connectomic and network covariance of the human brain. Neuroimage, 2013, 66(10): 489-499.
[10]  10. Yao Zhijun, Zhang Yuanchao, Lin Lei, et al. Abnormal cortical networks in mild cognitive impairment and Alzheimer's disease. PLoS Comput Biol, 2010, 6(11): e1001006.
[11]  11. Phillips D J, Mcglaughlin A, Ruth D, et al. Graph theoretic analysis of structural connectivity across the spectrum of Alzheimer's disease: The importance of graph creation methods. Neuroimage Clin, 2015, 7: 377-390.
[12]  12. Li Qiongling, Li Xinwei, Wang Xuetong, et al. Topological properties of large-scale cortical networks based on multiple morphological features in amnestic mild cognitive impairment. Neural Plast, 2016, 2016: 3462309.
[13]  13. Bai Feng, Shu Ni, Yuan Yonggui, et al. Topologically convergent and divergent structural connectivity patterns between patients with remitted geriatric depression and amnestic mild cognitive impairment. J Neurosci, 2012, 32(12): 4307-4318.
[14]  14. Daianu M, Jahanshad N, Nir T M, et al. Breakdown of brain connectivity between normal aging and Alzheimer's disease: a structural k-core network analysis. Brain Connect, 2013, 3(4): 407-422.
[15]  15. Daianu M, Jahanshad N, Nir T M, et al. Rich club analysis in the Alzheimer's disease connectome reveals a relatively undisturbed structural core network. Hum Brain Mapp, 2015, 36(8): 3087-3103.
[16]  16. Zhang Bing, Zhang Xin, Zhang Fang, et al. Characterizing topological patterns in amnestic mild cognitive impairment by quantitative water diffusivity. J Alzheimers Dis, 2015, 43(2): 687-697.
[17]  17. Vecchio F, Miraglia F, Quaranta D, et al. Cortical connectivity and memory performance in cognitive decline: A study via graph theory from EEG data. Neuroscience, 2016, 316: 143-150.
[18]  18. Lu C F, Wang Y J, Shin T, et al. Altered network organization in mild Alzheimer's disease compared to mild cognitive impairment using resting-state EEG. International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering, 2014, 8(11): 780-786.
[19]  19. Lu C F, Wang Y J, Wu Y T, et al. Relations of progression in cognitive decline with initial EEG resting-state functional network in mild cognitive impairment. International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering, 2014, 8(11): 787-793.
[20]  20. Miraglia F, Vecchio F, Bramanti P, et al. EEG characteristics in "eyes-open" versus "eyes-closed" conditions: Small-world network architecture in healthy aging and age-related brain degeneration. Clin Neurophysiol, 2016, 127(2): 1261-1268.
[21]  21. Tóth B, File B, Boha R, et al. EEG network connectivity changes in mild cognitive impairment--preliminary results. Int J Psychophysiol, 2014, 92(1): 1-7.
[22]  22. Gardini S, Venneri A, Sambataro F, et al. Increased functional connectivity in the default mode network in mild cognitive impairment: a maladaptive compensatory mechanism associated with poor semantic memory performance. J Alzheimers Dis, 2015, 45(2): 457-470.
[23]  23. Wang Jinhui, Zuo Xinian, Dai Zhengjia, et al. Disrupted functional brain connectome in individuals at risk for Alzheimer's disease. Biol Psychiatry, 2013, 73(5): 472-481.
[24]  24. Bai Lijun, Zhang Ming, Chen Shangjie, et al. Characterizing acupuncture de qi in mild cognitive impairment: relations with small-world efficiency of functional brain networks. Evid Based Complement Alternat Med, 2013: 304804.
[25]  25. Liu Yong, Yu Chunshui, Zhang Xinqing, et al. Impaired long distance functional connectivity and weighted network architecture in Alzheimer's disease. Cereb Cortex, 2014, 24(6): 1422-1435.
[26]  26. Sun Yu, Yin Qihua, Fang Rong, et al. Disrupted functional brain connectivity and its association to structural connectivity in amnestic mild cognitive impairment and Alzheimer's disease. PLoS One, 2014, 9(5): e96505.
[27]  27. Tijms B M, Wink A M, De Haan W, et al. Alzheimer's disease: connecting findings from graph theoretical studies of brain networks. Neurobiol Aging, 2013, 34(8): 2023-2036.
[28]  28. Zhu Dajiang, Li Kaiming, Terry D P, et al. Connectome-scale assessments of structural and functional connectivity in MCI. Hum Brain Mapp, 2014, 35(7): 2911-2923.
[29]  29. Wang Zhiqun, Wang Jianli, Zhang Han, et al. Interhemispheric functional and structural disconnection in Alzheimer's disease: a combined resting-state fMRI and DTI study. PLoS One, 2015, 10(5): e0126310.
[30]  30. Vecchio F, Miraglia F, Curcio G, et al. Cortical brain connectivity evaluated by graph theory in dementia: a correlation study between functional and structural data. J Alzheimers Dis, 2015, 45(3): 745-756.
[31]  31. Zhong Suyu, He Yong, Gong Gaolang. Convergence and divergence across construction methods for human brain white matter networks: an assessment based on individual differences. Hum Brain Mapp, 2015, 36(5): 1995-2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133