全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

慢性阻塞性肺疾病CT肺血管定量指标的临床意义

DOI: doi:10.7507/1671-6205.2015131

Keywords: 慢性阻塞性肺疾病, 肺动脉, 计算机断层扫描, 临床指标

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的探讨慢性阻塞性肺疾病(简称慢阻肺)患者高分辨率CT (HRCT)肺血管定量指标的临床意义。 方法纳入2013年5月至2015年2月于北京大学第三医院门诊确诊的45~80岁稳定期慢阻肺患者53例,分析其HRCT结果,测量主肺动脉直径(mPAD)、轴位斜mPAD、矢状位mPAD、右肺动脉直径(RPAD)、左肺动脉直径(LPAD)等指标,用Image J 1.48计算横截面积(CSA)小于5 mm2血管的总横截面积占肺总面积的百分比(% CSA<5),用GE ADW 4.5计算低衰减区域(<-950 HU)占肺总体积百分比(% LAA)评估肺气肿程度。行肺功能检查,完成慢阻肺评估测试(CAT)、改良版英国医学研究委员会呼吸困难问卷(mMRC)、圣乔治呼吸问卷(SGRQ)和慢阻肺急性加重频率的调查问卷。 结果慢阻肺患者mPAD、轴位斜mPAD、矢状位mPAD、RPAD、LPAD分别与% LAA呈正相关(r值为0.36、0.33、0.43、0.45、0.33,P均<0.05),% CSA<5与% LAA呈负相关(r=-0.37)。mPAD分别与CAT、SGRQ、慢阻肺急性加重频率呈正相关(r值为0.52、0.29、0.35),与FEV1% pred呈负相关(r=-0.30)。% CSA<5分别与CAT、SGRQ、慢阻肺急性加重频率呈负相关(r值为-0.29、-0.30、-0.29),与FEV1% pred呈正相关(r=0.28)。多因素线性回归分析发现mPAD与体质指数(BMI)、% LAA、CAT存在线性关系,轴位斜mPAD、矢状位mPAD、RPAD分别与% LAA、CAT存在线性关系,% CSA<5与FEV1% pred、% LAA存在线性关系(P均<0.05)。 结论慢阻肺患者CT定量的肺小血管横截面积和肺动脉直径与临床指标相关,可为慢阻肺患者的病情评估提供新的依据

References

[1]  1. ?Matsuoka S, Washko GR, Yamashiro T, et al. Pulmonary hypertension and computed tomography measurement of small pulmonary vessels in severe emphysema. Am J Respir Crit Care Med,2010,181:218-225.
[2]  2. Matsuoka S, Yamashiro T, Washko GR, et al. Quantitative CT assessment of chronic obstructive pulmonary disease. Radiographics,2010,30:55-66.
[3]  3. Coche E, Pawlak S, Dechambre S, et al. Peripheral pulmonary arteries:identification at multi-slice spiral CT with 3D reconstruction. Eur Radiol,2003,13:815-822.
[4]  4. 中华医学会呼吸病学分会慢性阻塞性肺疾病学组.慢性阻塞性肺疾病诊治指南(2013年修订版).中华结核和呼吸杂志,2013,36:255-264.
[5]  5. Mahammedi A, Oshmyansky A, Hassoun PM, et al. Pulmonary artery measurements in pulmonary hypertension:the role of computed tomography. J Thorac Imaging,2013,28:96-103.
[6]  6. 张伟,俞同福,徐海,等.CT肺动脉成像对急性肺栓塞患者肺动脉高压严重程度的评估.放射学实践,2013,28:324-328.
[7]  7. Matsuoka S, Washko GR, Dransfield MT, et al. Quantitative CT measurement of cross-sectional area of small pulmonary vessel in COPD:correlations with emphysema and airflow limitation. Acad Radiol,2010,17:93-99.
[8]  8. Matsuura Y, Kawata N, Yanagawa N, et al. Quantitative assessment of cross-sectional area of small pulmonary vessels in patients with COPD using inspiratory and expiratory MDCT. Eur J Radiol, 2013,82:1804-1810.
[9]  9. Matsuoka S, Yamashiro T, Diaz A, et al. The relationship between small pulmonary vascular alteration and aortic atherosclerosis in chronic obstructive pulmonary disease:quantitative CT analysis. Acad Radiol,2011,18:40-46.
[10]  10. Uejima I, Matsuoka S, Yamashiro T, et al. Quantitative computed tomographic measurement of a cross-sectional area of a small pulmonary vessel in nonsmokers without airflow limitation. Japan J Radiol, 2011,29:251-255.
[11]  11. Wells JM, Dransfield MT. Pathophysiology and clinical implications of pulmonary arterial enlargement in COPD. Int J Chron Obstruct Pulmon Dis,2013,8:509-821.
[12]  12. Tuder RM, Flook BE, Voelkel NF. Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia:modulation of gene expression by nitric oxide. J Clin Invest,1995,95:1798-1807.
[13]  13. Tuder RM, Zhen L, Cho CY, et al. Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am J Respir Cell Mol Biol,2003,29:88-97.
[14]  14. Washko GR, Parraga G, Coxson HO. Quantitative pulmonary imaging using computed tomography and magnetic resonance imaging. Respirology,2012,17:432-444.
[15]  15. Estepar RS, Kinney GL, Black-Shinn JL, et al. Computed tomographic measures of pulmonary vascular morphology in smokers and their clinical implications. Am J Respir Crit Care Med,2013,188:231-239.
[16]  16. Wells JM, Washko GR, Han MK, et al. Pulmonary arterial enlargement and acute exacerbations of COPD. New Engl J Med,2012,367:913-921.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133