全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

慢性黏液分泌过多与痰中肿瘤抑制基因启动子甲基化水平的相关性分析

DOI: doi:10.7507/1671-6205.201704007

Keywords: 基因启动子的甲基化, 慢性黏液分泌过多, 肺癌基因

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的 研究吸烟者痰液 DNA 中的肿瘤抑制基因,评估慢性黏液分泌过多(CMH)与痰中基因启动子甲基化的相关性。 方法 纳入 2013 年至 2016 年延安大学附属医院呼吸内科诊治的患者,使用甲基化特异性(MSP)方法评估 700 例城市吸烟者和 380 例农村吸烟者痰样品中 11 个肿瘤抑制基因的启动子甲基化水平。 结果 CMH 与甲基化基因的总体增加的数量显著相关,其中硫酸酯酶 2( SULF2)甲基化表现出最一致的相关性。 SULF2 甲基化和 CMH 之间的关联在两组吸烟者男性中显著增加( OR=2.73,95% CI 1.53~4.93, P=0.001; OR=2.96,95% CI 1.47~5.94, P=0.002),但在女性中不显著。与目前吸烟者比较,具有持续性 CMH 的男性曾经吸烟者中甲基化水平与 CMH 之间的关联更为明显( SULF2: OR=3.64,95% CI 1.57~8.35, P=0.002)。 结论 具有持续性 CMH 的男性前吸烟者痰液细胞中肺癌风险基因的启动子甲基化水平显著增加,可能会增加患肺癌的风险

References

[1]  2. 郝伟欣. 慢性阻塞性肺疾病. 中国全科医学, 2004, 7(6): 365-367.
[2]  3. Kim V, Han MK, Vance GB, et al. The chronic bronchitic phenotype of COPD: an analysis of the COPD gene study. Chest, 2011, 140(3): 626-633.
[3]  4. 王薇茜, 邓炯. 慢性阻塞性肺病与肺癌的相互关系. 国际肿瘤学杂志, 2014, 41(6): 439-443.
[4]  6. Wang H, Yang L, Zou L, et al. Association between chronic obstructive pulmonary disease and lung cancer: a case-control study in Southern Chinese and a meta-analysis. PLoS One, 2012, 7(9): e46144.
[5]  7. 盖晓燕. 香烟烟雾暴露对支气管哮喘影响机制的研究进展. 中华结核和呼吸杂志, 2011, 34(5): 383-385.
[6]  9. 李琪, 陈贵华, 周向东. Wnt/β-catenin 信号通路参与高渗条件下气道上皮细胞黏液高分泌. 上海交通大学学报 (医学版), 2014, 34(5): 603-608.
[7]  10. 赵旭晔, 崔勇, 李亚玲,等. 肺癌肿瘤抑制因子 1 基因甲基化和肺癌肿瘤抑制因子 1 蛋白在宫颈病变中的表达及意义. 中华肿瘤杂志, 2015(5):356-360.
[8]  11. Bruse S, Sood A, Petersen H, et al. New Mexican Hispanic smokers have lower odds of chronic obstructive pulmonary disease and less decline in lung function than non-Hispanic whites. Am J Respir Crit Care Med, 2011, 184(11): 1254-1260.
[9]  12. Alberg AJ, Brock MV, Ford JG, et al. Epidemiology of lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest, 2013, 143(5): e1S-e29S.
[10]  14. Koshiol J, Rotunno M, Consonni D, et al. Chronic obstructive pulmonary disease and altered risk of lung cancer in a population-based case-control study. PLoS One, 2009, 4(10): e7380.
[11]  15. Sood A, Petersen H, Blanchette CM, et al. Wood smoke exposure and gene promoter methylation are associated with increased risk for COPD in smokers. Am J Respir Crit Care Med, 2010, 182(9): 1098-1104.
[12]  16. Tessema M, Yingling CM, Thomas CL, et al. SULF2 methylation is prognostic for lung cancer survival and increases sensitivity to topoisomerase-I inhibitors via induction of ISG15. Oncogene, 2012, 31(37): 4107-4116.
[13]  17. Mebratu YA, Schwalm K, Smith KR, et al. Cigarette smoke suppresses Bik to cause epithelial cell hyperplasia and mucous cell metaplasia. Am J Respir Crit Care Med, 2011, 183(11): 1531-1538.
[14]  1. Bentayeb M, Simoni M, Baiz N, et al. Geriatric study in Europe on health effects of air quality in nursing homes G: adverse respiratory effects of outdoor air pollution in the elderly. Int J Tuberc Lung Dis, 2012, 16(9): 1149-1161.
[15]  5. Brenner DR, McLaughlin JR, Hung RJ. Previous lung diseases and lung cancer risk: a systematic review and meta-analysis. PLoS One, 2011, 6(3): e17479.
[16]  8. Leng S, Do K, Yingling CM, et al. Defining a gene promoter methylation signature in sputum for lung cancer risk assessment. Clin Cancer Res, 2012, 18(12):3387-3395.
[17]  13. Belinsky SA, Liechty KC, Gentry FD, et al. Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer research, 2006, 66(6): 3338-3344.
[18]  18. Chand HS, Woldegiorgis Z, Schwalm K, et al. Acute inflammation induces insulin-like growth factor-1 to mediate Bcl-2 and Muc5ac expression in airway epithelial cells. Am J Respir Cell Mol Biol, 2012, 47(6): 784-791.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133