全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

沉默信息调节因子 2 相关酶 1 在慢性阻塞性肺疾病患者血清中的表达水平及临床意义

DOI: doi:10.7507/1671-6205.201706042

Keywords: 沉默信息调节因子 2 相关酶 1, 慢性阻塞性肺疾病, 肺功能, 血清

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的探讨沉默信息调节因子 2 相关酶 1(SIRT1)在慢性阻塞性肺疾病(简称慢阻肺)患者血清中的表达水平及临床意义。方法选取本院慢阻肺急性加重期患者 40 例、慢阻肺稳定期患者 30 例作为研究组,另选体检健康者 20 例作为对照组。对所有受试者进行肺功能检查。应用酶联免疫吸附法和蛋白免疫印迹检测血清 SIRT1、核因子-κB(NF-κB)、基质金属蛋白酶-9(MMP-9) 水平。结果与对照组相比,慢阻肺稳定期组和慢阻肺急性加重组患者第 1 秒用力呼气容积占预计值百分比(FEV1%pred)及第 1 秒用力呼吸容积占用力肺活量百分比(FEV1/FVC)均显著降低(均 P<0.05)。与慢阻肺稳定期组相比,慢阻肺急性加重组患者 FEV1%pred 及 FEV1/FVC 均显著降低(P<0.05)。与对照组相比,慢阻肺稳定期组和慢阻肺急性加重组患者血清 SIRT1 水平均显著降低,而 NF-κB 和 MMP-9 水平均显著增加(P<0.05)。与慢阻肺稳定期组患者相比,慢阻肺急性加重组患者血清 SIRT1 水平显著下降,而 NF-κB 和 MMP-9 水平均显著增加(均P<0.05)。经 Pearson 直线相关法分析,血清 SIRT1 水平与慢阻肺患者 FEV1%pred(P<0.05)、FEV1/FVC(P<0.05)等肺功能指标呈显著正相关。血清 SIRT1 水平与 NF-κB(P<0.05)、MMP-9(P<0.05)蛋白表达水平呈显著负相关。结论慢阻肺患者血清 SIRT1 水平降低与肺功能下降相关,有可能作为慢阻肺的潜在生物标志物

References

[1]  1. Conti V, Corbi G, Simeon V, et al. Aging-related changes in oxidative stress response of human endothelial cells. Aging Clin Experim Res, 2015, 27(4): 1-7.
[2]  2. 中华医学会呼吸病学分会慢性阻塞性肺疾病学组. 慢性阻塞性肺疾病诊治指南 (2013 年修订版). 中国医学前沿杂志电子版, 2014, 6(2): 67-80.
[3]  3. 高薇. 醒脑静对慢阻肺急性加重期呼吸衰竭患者肺功能与血气分析的影响. 中医药导报, 2014(15): 51-53.
[4]  4. 张晓慧. 炎性细胞因子水平检测对慢性阻塞性肺疾病的临床意义. 海南医学院学报, 2016, 22(3): 240-242.
[5]  5. Testa G, Cacciatore F, Bianco A, et al. Chronic obstructive pulmonary disease and long-term mortality in elderly subjects with chronic heart failure. Aging Clin Experim Res, 2017, 29(6): 1-8.
[6]  6. Mercado N, Ito K, Barnes PJ. Accelerated ageing of the lung in COPD: new concepts. Thorax, 2015, 70(5): 482-489.
[7]  7. 李芳, 关文霞, 任飞, 等. Sirt-1 和 Hif-1α 在慢性阻塞性肺疾病患者外周血单个核细胞中的表达及其意义. 吉林大学学报 (医学版), 2015, 41(2): 356-361.
[8]  8. Ondracek CR, Frappier V, Ringel AE, et al. Mutations that allow SIR2 orthologs to function in a NAD+-depleted environment. Cell Rep, 2017, 18(10): 2310-2319.
[9]  9. Ganesan R, Hos NJ, Gutierrez S, et al. Salmonella typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy. Plos Pathogens, 2017, 13(2): e1006227.
[10]  10. Emamgholipour S, Hosseinnezhad A, Sahraian MA, et al. Evidence for possible role of melatonin in reducing oxidative stress in multiple sclerosis through its effect on SIRT1 and antioxidant enzymes. Life Sci, 2016, 145(8): 34-41.
[11]  11. Zhong Y, Chen AF, Zhao J, et al. Serum levels of cathepsin D, sirtuin1, and endothelial nitric oxide synthase are correlatively reduced in elderly healthy people. Aging Clin Experim Res, 2016, 28(4): 641-645.
[12]  12. Wong SY, Tang BL. SIRT1 as a therapeutic target for Alzheimer’s disease. Rev Neurosci, 2016, 27(8): 813-825.
[13]  13. Testa G, Staurenghi E, Zerbinati C, et al. Changes in brain oxysterols at different stages of Alzheimer’s disease: Their involvement in neuroinflammation. Redox Biol, 2016, 10(C): 24-33.
[14]  14. Yanagisawa S, Papaioannou AI, Papaporfyriou A, et al. Decreased Serum Sirtuin-1 in COPD. Chest, 2017, 152(2): 343-352.
[15]  15. Taka C, Hayashi R, Shimokawa K, et al. SIRT1 and FOXO1 mRNA expression in PBMC correlates to physical activity in COPD patients. Int J Chron Obstruct Pulmon Dis, 2017, 12(8): 3237-3244.
[16]  16. 伍造端, 邓立普. NF-κB 在慢性阻塞性肺疾病中的作用. 蛇志, 2015, 24(1): 60-61.
[17]  17. Cui X, Chen Q, Dong Z, et al. Inactivation of Sirt1 in mouse livers protects against endotoxemic liver injury by acetylating and activating NF-κB. Cell Death Dis, 2016, 7(10): e2403.
[18]  18. 李敏, 王宇宏, 李巍. 基质金属蛋白酶 2, 9, 12 与慢性阻塞性肺疾病的临床研究. 中国医学创新, 2016, 13(2): 44-47.
[19]  19. Nakamaru Y, Vuppusetty C, Wada H, et al. A protein deacetylase SIRT1 is a negative regulator of metalloproteinase-9. FASEB J, 2009, 23(9): 2810-2819.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133