全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

H7N9禽流感患者恢复期T细胞受体库特征研究

DOI: doi:10.7507/1671-6205.2016102

Keywords: 高通量测序, 免疫组库, 抗原互补决定区, 生物信息学, 禽流感病毒

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的 建立H7N9禽流感患者恢复期T细胞受体库,寻找H7N9特异性T细胞受体变化。 方法 收集2013年3月至5月确诊的8例人感染禽流感H7N9患者恢复期血液以及10例健康人血液,分离基因组DNA,采用Illumina HeSeq2000测序平台对T细胞受体库β链(TRB)抗原互补决定区3进行高通量测序,分析TRB库的多样性等特征。 结果 与正常组比较,H7N9患者某些TRBV基因使用频率如TRBV30、TRBV27存在显著差异。使用主成分分析降维后,发现恢复期患者TRBV-TRBJ基因配对模式与正常人有显著差别,可用于区分H7N9患者和正常人群。患者-患者、正常人-正常人之间的共享序列数量和频率明显大于患者-正常人,且患者间TRB库具有较高相似度。多样性指数在患者组明显低于正常人群,显示在感染恢复期其免疫功能仍处于相对低下状态。同时H7N9患者中超高表达克隆明显增多,且序列间存在较高相似性。 结论 H7N9恢复期患者T细胞受体库有H7N9特征性变化,这些特征将为疾病的诊断和治疗性T细胞的研究提供重要信息

References

[1]  1. Gao R, Cao B, Hu Y, et al. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med, 2013, 368:1888-1897.
[2]  2. Epstein SL.Prior H1N1 influenza infection and susceptibility of Cleveland Family Study participants during the H2N2 pandemic of 1957:an experiment of nature. J Infect Dis, 2006, 193:49-53.
[3]  3. Sridhar S, Begom S, Bermingham A, et al.Cellular immune correlates of protection against symptomatic pandemic influenza. Nat Med, 2013, 19:1305-1312.
[4]  4. Duvvuri VR, Duvvuri B, Alice C, et al.Preexisting CD4+ T-cell immunity in human population to avian influenza H7N9 virus:whole proteome-wide immunoinformatics analyses. PLoS One, 2014, 9:e91273.
[5]  5. Quinones-Parra S, Grant E, Loh L, et al.Preexisting CD8+ T-cell immunity to the H7N9 influenza A virus varies across ethnicities. Proc Natl Acad Sci U S A, 2014, 111:1049-1054.
[6]  7. Wang Z, Wan Y, Qiu C, et al.Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8+ T cells. Nat Commun, 2015, 6:6833.
[7]  8. La Gruta NL, Turner SJ.T cell mediated immunity to influenza:mechanisms of viral control. Trends Immunol, 2014, 35:396-402.
[8]  9. Zhang W, Du Y, Su Z, et al.IMonitor:A Robust Pipeline for TCR and BCR repertoire analysis. Genetics, 2015, 201:459-472.
[9]  10. Messaoudi I, Guevara-Patino JA, Dyall R, et al.Direct link between mhc polymorphism, T cell avidity, and diversity in immune defense. Science, 2002, 298:1797-1800.
[10]  11. Gearhart PJ.Immunology:the roots of antibody diversity. Nature, 2002, 419:29-31.
[11]  12. Brawand P, Cerottini JC, MacDonald HR.Hierarchal utilization of different T-cell receptor Vbeta gene segments in the CD8+-T-cell response to an immunodominant Moloney leukemia virus-encoded epitope in vivo. J Virol, 1999, 73:9161-9169.
[12]  13. Hughes MM, Yassai M, Sedy JR, et al. T cell receptor CDR3 loop length repertoire is determined primarily by features of the V(D)J recombination reaction. Eur J Immunol, 2003, 33:1568-1575.
[13]  14. Miqueu P, Guillet M, Degauque N, et al.Statistical analysis of CDR3 length distributions for the assessment of T and B cell repertoire biases. Mol Immunol, 2007, 44:1057-1064.
[14]  15. Strutt TM, McKinstry KK, Marshall NB, et al.Multipronged CD4+ T-cell effector and memory responses cooperate to provide potent immunity against respiratory virus. Immunol Rev, 2013, 255:149-164.
[15]  16. Harty JT, Badovinac VP.Shaping and reshaping CD8+ T-cell memory. Nat Rev Immunol, 2008, 8:107-119.
[16]  17. Badovinac VP, Porter BB, Harty JT.Programmed contraction of CD8+ T cells after infection. Nat Immunol, 2002, 3:619-626.
[17]  6. van de Sandt CE, Kreijtz JH, de Mutsert G, et al.Human cytotoxic T lymphocytes directed to seasonal influenza A viruses cross-react with the newly emerging H7N9 virus. J Virol, 2014, 88:1684-1693.
[18]  18. Richards KA, Chaves FA, Sant AJ.The memory phase of the CD4 T-cell response to influenza virus infection maintains its diverse antigen specificity. Immunology, 2011, 133:246-256.
[19]  19. Crotty S, Ahmed R.Immunological memory in humans. Semin Immunol, 2004, 16:197-203.
[20]  20. Lewis SM.The mechanism of V(D)J joining:lessons from molecular, immunological, and comparative analyses. Adv Immunol, 1994, 56:27-150.
[21]  21. Yang J, Chen J, Mao H, et al.Skewed T-cell receptor beta chain variable gene (TCRBV) usage among different clinical types of patients with chronic HBV infection. FEMS Immunol Med Microbiol, 2012, 65:448-455.
[22]  22. Marrero I, Hamm DE, Davies JD.High-throughput sequencing of islet-infiltrating memory CD4+ T cells reveals a similar pattern of TCR Vbeta usage in prediabetic and diabetic NOD mice. PLoS One, 2013, 8:e76546.
[23]  23. Costa AI, Koning D, Ladell K, et al.Complex T-cell receptor repertoire dynamics underlie the CD8+ T-cell response to HIV-1. J Virol, 2 015, 89:110-119.
[24]  24. Turner SJ, La Gruta NL, Kedzierska K, et al.Functional implications of T cell receptor diversity. Curr Opin Immunol, 2009, 21:286-290.
[25]  25. Jost L.Partitioning diversity into independent alpha and beta components. Ecology, 2007, 88:2427-2439.
[26]  26. Birnbaum ME, Dong S, Garcia KC.Diversity-oriented approaches for interrogating T-cell receptor repertoire, ligand recognition, and function. Immunol Rev, 2012, 250:82-101.
[27]  27. Goronzy JJ, Weyand CM.T cell development and receptor diversity during aging. Curr Opin Immunol, 2005, 17:468-475.
[28]  28. Goronzy JJ, Lee WW, Weyand CM.Aging and T-cell diversity. Exp Gerontol, 2007, 42:400-406.
[29]  29. Yager EJ, Ahmed M, Lanzer K, et al.Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J Exp Med, 2008, 205:711-723.
[30]  30. Lanzer KG, Johnson LL, Woodland DL, et al.Impact of ageing on the response and repertoire of influenza virus-specific CD4 T cells. Immun Ageing, 2014, 11:9.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133