全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

甲磺酸伊马替尼对放射性肺炎小鼠肺部氧化应激指标及转化生长因子-β1 表达影响的研究

DOI: doi:10.7507/1671-6205.201703027

Keywords: 甲磺酸伊马替尼, 放射性肺炎, 转化生长因子-β1

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的 探讨甲磺酸伊马替尼对放射性肺炎小鼠肺部氧化应激指标及转化生长因子-β1(TGF-β1)表达的影响。 方法 将 45 只清洁级 C57BL/6 小鼠随机平均分为空白组、治疗组和模型组。每天给予治疗组与模型组胸部照射,照射结束 4 h 后给予治疗组小鼠甲磺酸伊马替尼(给药剂量 0.081 g/kg);其余组仅给予生理盐水。实验 30 d 后,将各组小鼠处死,取其左右肺,分别采用 HE 染色及免疫组化观察其病理变化及肺部 TGF-β1 的表达情况。制作肺匀浆,检测其中谷胱甘肽过氧化物酶(GSH-PX)、丙二醛(MDA)、总抗氧化能力(T-Aoc)及超氧化物歧化酶(SOD)等氧化应激指标含量。 结果 治疗组 GSH-PX、T-Aoc 及 SOD 分别为(173.15±12.21)U、(119.33±11.06)U/mgprot 及(1.73±0.33)U/mgprot,均明显高于模型组( P 均<0.05),而 MDA 含量则为(0.68±0.08)nmol/mgprot,明显低于模型组( P<0.05)。HE 染色及免疫组化结果显示,治疗组仅出现轻度肺泡炎改变及部分 TGF-β1 阳性表达,模型组则多为中级以上肺泡炎及高水平 TGF-β1 阳性表达,治疗组 HE 染色及免疫组化评分分别为(1.26±0.12)分和(0.31±0.12)分,均明显低于模型组( P<0.05)。 结论 甲磺酸伊马替尼可有效改善放射性肺炎小鼠肺部氧化应激紊乱,抑制小鼠肺部 TGF-β1 的表达,值得开展深入研究

References

[1]  1. 黎建绪, 郑雅梅, 胡晓燕, 等. 艾迪注射液对小鼠放射性肺损伤的防治作用. 医药导报, 2014, 33(2): 184-188.0.
[2]  3. Son Y, Lee HJ, Rho JK, et al. The ameliorative effect of silibinin against radiation-induced lung injury: protection of normal tissue without decreasing therapeutic efficacy in lung cancer. BMC Pulm Med. 2015, 15: 68.
[3]  10. Carter CL, Jones JW, Barrow K, et al. A MALDI-MSI Approach to the Characterization of Radiation-Induced Lung Injury and Medical Countermeasure Development.Health Phys. 2015, 109(5): 466-478.
[4]  15. Zhang J, Li B, Ding X, et al. Genetic variants in inducible nitric oxide synthase gene are associated with the risk of radiation-induced lung injury in lung cancer patients receiving definitive thoracic radiation. Radiother Oncol. 2014, 111(2): 194-198.
[5]  16. Yu J, Yuan X, Liu Y, et al. Delayed Administration of WP1066, an STAT3 Inhibitor, Ameliorates Radiation-Induced Lung Injury in Mice. Lung. 2016, 194(1): 67-74.
[6]  17. Zhao DY, Qu HJ, Guo JM, et al. Protective Effects of Myrtol Standardized Against Radiation-Induced Lung Injury. Cell Physiol Biochem. 2016, 38(2): 619-634.
[7]  18. Kralj E, Zakelj S, Trontelj J, et al. Absorption and elimiation of imatinib through the rat intestine in vitro. Int J Pharm, 2014, 460(1/2): 144-149.
[8]  19. Quinta’s-Cardama A, Jabbour EJ. Considerations for early switch to nilotinib or dasatinib in patients with chronic myeloid leukemia with inadequate response to first-line imatinib. Leuk Res, 2013, 37(5): 487-495.
[9]  20. Liu Y, Tan D, Tong C, et al. Blueberry anthocyanins ameliorate radiation-induced lung injury through the protein kinase RNA-activated pathway. Chem Biol Interact. 2015, 242:363-371.
[10]  2. Li X, Xu G, Qiao T, et al. Effects of CpG oligodeoxynucleotide 1826 on acute radiation-induced lung injury in mice. Biol Res. 2016, 49(1): 8.
[11]  4. Fang XM, Hu CH, Hu XY, et al. An Appreciation for the Rabbit Ladderlike Modeling of Radiation-induced Lung Injury with High-energy X-Ray. Chin Med J (Engl). 2015, 128(12): 1636-1642.
[12]  5. Malaviya R, Gow AJ, Francis M, et al. Radiation-induced lung injury and inflammation in mice: role of inducible nitric oxide synthase and surfactant protein D. Toxicol Sci. 2015, 144(1): 27-38.
[13]  6. Elias MH, Bada AA, Azlan H, et al. BCR-ABL kinase domain mutations, including 2 novel mutations inimatinib resistant Malaysian chronic myeloid leukemia patients-Frequency and clinical Outcome. Leuk Res, 2014, 38(4): 454-459.
[14]  7. Mathisen MS, Kantarjian HM, Cortes J, et al. Practical issues surrounding the explosion of tyrosine kinase inhibitors for the management of chronic myeloid leukemia. Blood Rev, 2014, 28(5): 179-187.
[15]  8. 孙敬方. 动物实验方法学. 北京: 人民卫生出版社, 2001, 198-201.
[16]  9. Jiao J, Gai QY, Zhang L, et al. High-speed homogenization coupled with microwave-assisted extraction followed by liquid chromatography-tandem mass spectrometry for the direct determination of alkaloids and flavonoids in fresh Isatis tinctoria L. hairy root cultures. Anal Bioanal Chem. 2015, 407(16): 4841-4848.
[17]  11. Giridhar P, Mallick S, Rath GK, et al. Radiation induced lung injury: prediction, assessment and management. Asian Pac J Cancer Prev. 2015, 16(7): 2613-2617.
[18]  12. Santyr G, Fox M, Thind K, et al. Anatomical, functional and metabolic imaging of radiation-induced lung injury using hyperpolarized MRI. NMR Biomed. 2014, 27(12): 1515-1524.
[19]  13. Murigi FN, Mohindra P, Hung C, et al. Dose Optimization Study of AEOL 10150 as a Mitigator of Radiation-Induced Lung Injury in CBA/J Mice. Radiat Res. 2015, 184(4): 422-432. doi: 10.1667/RR14110.1.
[20]  14. Huang Y, Liu W, Liu H, et al. Grape seed pro-anthocyanidins ameliorates radiation-induced lung injury. J Cell Mol Med. 2014, 18(7): 1267-1277.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133