全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

体外膜肺氧合时机械通气相关生理机制与设置的临床进展

DOI: doi:10.7507/1671-6205.201610025

Full-Text   Cite this paper   Add to My Lib

Abstract:

References

[1]  21. Vieillard-Baron A, Matthay M, Teboul JL, et al. Experts’ opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation. Intensive Care Med, 2016, 42(5): 739-749.
[2]  27. Brodie D, Bacchetta M. Extracorporeal membrane oxygenation for ARDS in adults. N Engl J Med, 2011, 365: 1905-1914.
[3]  37. Extracorporeal Life Support Organization: ELSO Guidelines for Cardiopulmonary Extracorporeal Life Support and Patient Specific Supplements to the ELSO General Guidelines. Ann Arbor, MI. Available at: http://elso.org/.
[4]  38. Combes A, Bacchetta M, Brodie D, et al. Extracorporeal membrane oxygenation for respiratory failure in adults. Curr Opin Crit Care, 2012, 18: 99-104.
[5]  39. Réseau Europeen de Recherche en Ventilation Artificielle (REVA)-Syndrome de Détresse Respiratoire Aigu? lié à la grippe A (H1N1)-2009 Recommandations pour l’assistance respiratoire. Available at: http://www.revaweb.org.
[6]  40. Combes A. Extracorporeal membrane oxygenation (ECMO) for severe acute respiratory distress syndrome (ARDS). The EOLIA (ECMO to rescue Lung Injury in severe ARDS) trial: a multicenter, international, randomized, controlled open trial. Reanimation, 2011, 20: 49-61.
[7]  44. Dot I, Pérez-Teran P, Samper MA, et al. Diaphragm dysfunction in mechanically ventilated patients. Arch Bronconeumol, 2017, 53(3): 150-156.
[8]  48. Langer T, Santini A, Bottino N, et al. " Awake” extracorporeal membrane oxygenation (ECMO): pathophysiology, technical considerations, and clinical pioneering. Crit Care, 2016, 20(1): 150.
[9]  50. Yeo HJ, Cho WH, Kim D. Awake extracorporeal membrane oxygenation in patients with severe postoperative acute respiratory distress syndrome. J Thorac Dis, 2016, 8(1): 37-42.
[10]  53. Hosokawa K, Nishimura M, Egi M, et al. Timing of tracheotomy in ICU patients: a systematic review of randomized controlled trials. Crit Care, 2015, 19: 424.
[11]  1. The Acute Respiratory Distress Syndrome Network: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med, 2000, 342: 1301-1308.
[12]  2. Cho YJ, Moon JY, Shin ES, et al. Clinical Practice Guideline of Acute Respiratory Distress Syndrome. Tuberc Respir Dis (Seoul), 2016, 79(4): 214-233.
[13]  3. Matthieu Schmidt, Vincent Pellegrino, Alain Combes, et al. Mechanical ventilation during extracorporeal membrane oxygenation. Critical Care, 2014, 18: 203.
[14]  5. Bein T, Zimmermann M, Hergeth K, et al. Pumpless extracorporeal removal of carbon dioxide combined with ventilation using low tidal volume and high positive end-expiratory pressure in a patient with severe acute respiratory distress syndrome. Anaesthesia, 2009, 64: 195-198.
[15]  6. Mauri T, Foti G, Zanella A, et al. Long-term extracorporeal membrane oxygenation with minimal ventilatory support: a new paradigm for severe ARDS?. Minerva Anestesiol, 2012, 78: 385-389.
[16]  7. Luecke T, Pelosi P. Clinical review: Positive end-expiratory pressure and cardiac output. Crit Care, 2005, 9: 607-621.
[17]  10. MacLaren G, Combes A, Bartlett RH. Contemporary extracorporeal membrane oxygenation for adult respiratory failure: life support in the new era. Intensive Care Med, 2012, 38: 210-220.
[18]  13. Elicker BM, Jones KT, Naeger DM, et al. Imaging of acute lung injury. Radiol Clin North Am, 2016, 54(6): 1119-1132.
[19]  15. Grasso S, Stripoli T, Sacchi M, et al. Inhomogeneity of lung parenchyma during the open lung strategy: a computed tomography scan study. Am J Respir Crit Care Med, 2009, 180: 415-423.
[20]  16. Nieman GF, Satalin J, Andrews P, et al. Personalizing mechanical ventilation according to physiologic parameters to stabilize alveoli and minimize ventilator induced lung injury (VILI). Intensive Care Med Expm, 2017, 5(1): 8.
[21]  19. Martin JB, Garbee D, Bonanno L. Effectiveness of positive end-expiratory pressure, decreased fraction of inspired oxygen and vital capacity recruitment maneuver in the prevention of pulmonary atelectasis in patients undergoing general anesthesia: a systematic review. JBI Database System Rev Implement Rep, 2015, 13(8): 211-249.
[22]  55. Fuehner T, Kuehn C, Hadem J, et al. Extracorporeal membrane oxygenation in awake patients as bridge to lung transplantation. Am J Respir Crit Care Med, 2012, 185: 763-768.
[23]  57. Olsson KM, Simon A, Strueber M, et al. Extracorporeal membrane oxygenation in nonintubated patients as bridge to lung transplantation. Am J Transplant, 2010, 10: 2173-2178.
[24]  62. Camporota L, Smith J, Barrett N, et al. Assessment of regional lung mechanics with electrical impedance tomography can determine the requirement for ECMO in patients with severe ARDS. Intensive Care Med, 2012, 38: 2086-2087.
[25]  63. Grasso S, Terragni P, Birocco A, et al. ECMO criteria for influenza A (H1N1)-associated ARDS: role of transpulmonary pressure. Intensive Care Med, 2012, 38: 395-403.
[26]  64. Patroniti N, Zangrillo A, Pappalardo F, et al. The Italian ECMO network experience during the 2009 influenza A (H1N1) pandemic: preparation for severe respiratory emergency outbreaks. Intensive Care Med, 2011, 37: 1447-1457.
[27]  4. Pham T, Combes A, Roze H, et al. Extracorporeal membrane oxygenation for pandemic influenza A (H1N1)-induced acute respiratory distress syndrome: a cohort study and propensity-matched analysis. Am J Respir Crit Care Med, 2013, 187: 276-285.
[28]  9. Schmidt M, Tachon G, Devilliers C, et al. Blood oxygenation and decarboxylation determinants during venovenous ECMO for respiratory failure in adults. Intensive Care Med, 2013, 39: 838-846.
[29]  11. Wang T, Gross C, Desai AA, et al. Endothelial cell signaling and ventilator-induced lung injury: molecular mechanisms, genomic analyses, and therapeutic targets. Am J Physiol Lung Cell Mol Physiol, 2017, 312(4): L452-L476.
[30]  12. Xie J, Jin F, Pan C, et al. The effects of low tidal ventilation on lung strain correlate with respiratory system compliance. Crit Care, 2017, Feb 3; 21(1): 23.
[31]  14. Caironi P, Cressoni M, Chiumello D, et al. Lung opening and closing during ventilation of acute respiratory distress syndrome. Am J Respir Crit Care Med, 2010, 181: 578-586.
[32]  17. Sahetya SK, Goligher EC, Brower RG. Fifty years of research in ARDS. Setting positive end-expiratory pressure in the acute respiratory distress syndrome. Am J Respir Crit Care Med, 2017 Feb 1. Available at: http://www.atsjournals.org/doi/abs/10.1164/ rccm.201610-2035CI?url_ver=Z39.88-2003&rfr_id=ori:rid: crossref.org&rfr_dat=cr_pub%3dpubmed.
[33]  18. Aboab J, Jonson B, Kouatchet A, et al. Effect of inspired oxygen fraction on alveolar derecruitment in acute respiratory distress syndrome. Intensive Care Med, 2006, 32: 1979-1986.
[34]  20. Randtke MA, Andrews BP, Mach WJ. Pathophysiology and prevention of intraoperative atelectasis: a review of the literature. J Perianesth Nurs, 2015, 30(6): 516-527.
[35]  8. ECMO and Life Support Systems Quadrox PLS and Rotaflow Hardware and Accessories. Availabe at: http://www.maquet. com/content/ Cardiopulmonary/Documents/Brochures/PLS_ BROCHU_MCV-BR-40000145-EN-04_1010_EN_NONUS.pdf.
[36]  22. Dreyfuss D, Soler P, Basset G, et al. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis, 1988, 137: 1159-1164.
[37]  23. Bein T, Weber-Carstens S, Goldmann A, et al. Lower tidal volume strategy (≈3 ml/kg) combined with extracorporeal CO 2 removal versus ‘conventional’ protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study. Intensive Care Med, 2013, 39(5): 847-856.
[38]  24. Peek GJ, Mugford M, Tiruvoipati R, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet, 2009, 374: 1351-1363.
[39]  25. Nielsen ND, Kjaergaard B, Koefoed-Nielsen J, et al. Apneic oxygenation combined with extracorporeal arteriovenous carbon dioxide removal provides sufficient gas exchange in experimental lung injury. ASAIO J, 2008, 54: 401-405.
[40]  26. Karagiannidis C, Lubnow M, Philipp A, et al. Autoregulation of ventilation with neurally adjusted ventilatory assist on extracorporeal lung support. Intensive Care Med, 2010, 36: 2038-2044.
[41]  28. Feihl F, Eckert P, Brimioulle S, et al. Permissive hypercapnia impairs pulmonary gas exchange in the acute respiratory distress syndrome. Am J Respir Crit Care Med, 2000, 162: 209-215.
[42]  29. Fanelli V, Ranieri MV, Mancebo J, et al. Feasibility and safety of low-flow extracorporeal carbon dioxide removal to facilitate ultra-protective ventilation in patients with moderate acute respiratory distress sindrome. Critical Care, 2016, 20(1): 36.
[43]  30. Frank JA, Gutierrez JA, Jones KD, et al. Low tidal volume reduces epithelial and endothelial injury in acid-injured rat lungs. Am J Respir Crit Care Med, 2002, 165: 242-249.
[44]  31. Terragni PP, Del Sorbo L, Mascia L, et al. Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology, 2009, 111: 826-835.
[45]  32. Kumpers P, Nickel N, Lukasz A, et al. Circulating angiopoietins in idiopathic pulmonary arterial hypertension. Eur Heart J, 2010, 31: 2291-2300.
[46]  33. Zabrocki LA, Brogan TV, Statler KD, et al. Extracorporeal membrane oxygenation for pediatric respiratory failure: survival and predictors of mortality. Critical Care Med, 2011, 39: 364-370.
[47]  34. Somaschini M, Bellan C, Locatelli G, et al. Extracorporeal membrane oxygenation with veno-venous bypass and apneic oxygenation for treatment of severe neonatal respiratory failure. Int J Artif Organs, 1995, 18: 574-578.
[48]  35. Serpa Neto A, Cardoso SO, Manetta JA, et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA, 2012, 308: 1651-1659.
[49]  36. Buscher H, Vaidiyanathan S, Al-Soufi S, et al. Sedation practice in veno-venous extracorporeal membrane oxygenation: an international survey. ASAIO J, 2013, 59(6): 636-641.
[50]  41. Yoshida T, Rinka H, Kaji A, et al. The impact of spontaneous ventilation on distribution of lung aeration in patients with acute respiratory distress syndrome: airway pressure release ventilation versus pressure support ventilation. Anesth Analg, 2009, 109: 1892-1900.
[51]  42. Jain SV, Kollisch-Singule M, Sadowitz B, et al. The 30-year evolution of airway pressure release ventilation (APRV). Intensive Care Med Exp, 2016, 4(1): 11.
[52]  43. Kollisch-Singule M, Emr B, Smith B, et al. Mechanical breath profile of airway pressure release ventilation: the effect on alveolar recruitment and microstrain in acute lung injury. JAMA Surg, 2014, 149(11): 1138-1145.
[53]  45. Bein T, Osborn E, Hofmann HS, et al. Successful treatment of a severely injured soldier from Afghanistan with pumpless extracorporeal lung assist and neurally adjusted ventilatory support. Int J Emerg Med, 2010, 3: 177-179.
[54]  46. Mauri T, Bellani G, Grasselli G, et al. Patient-ventilator interaction in ARDS patients with extremely low compliance undergoing ECMO: a novel approach based on diaphragm electrical activity. Intensive Care Med, 2013, 39: 282-291.
[55]  47. Hoeper MM, Wiesner O, Hadem J, et al. Extracorporeal membrane oxygenation instead of invasive mechanical ventilation in patients with acute respiratory distress syndrome. Intensive Care Med, 2013, 39: 2056-2057.
[56]  49. Schechter MA, Ganapathi MA, Englum BR, et al. Spontaneously breathing extracorporeal membrane oxygenation support provides the optimal bridge to lung transplantation. Transplantation, 2016, 100(12): 2699-2704.
[57]  51. Wiedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med, 2006, 354: 2564-2575.
[58]  52. Staudancher DL, Gold W, Biever PM, et al. Early fluid resuscitation and volume therapy in venoarterial extracorporeal membrane oxygenation. J Crit Care, 2016, 37: 130-135.
[59]  54. Hermens JA, Braithwaite SA, Platenkamp M, et al. Awake ECMO on the move to lung transplantation: serial monitoring of physical condition. Intensive Care Med, 2017, 43(5): 707-708.
[60]  56. Burki NK, Mani RK, Herth FJ, et al. A novel extracorporeal CO 2 removal system: results of a pilot study of hypercapnic respiratory failure in patients with COPD. Chest, 2013, 143(3): 678-686.
[61]  58. Wiesner O, Hadem J, Sommer W, et al. Extracorporeal membrane oxygenation in a nonintubated patient with acute respiratory distress syndrome. Eur Respir J, 2012, 40: 1296-1298.
[62]  59. Dioverti MV, Cawcutt KA, Schears GJ, et al. Use of extracorporeal membrane oxygenation for the treatment of influenza-induced acute respiratory distress syndrome in immunocompromised adults. Am J Med Sci, 2016, 352(1): 81-85.
[63]  60. Naruke T, Inomata T, Imai H, et al. End-tidal carbon dioxide concentration can estimate the appropriate timing for weaning off from extracorporeal membrane oxygenation for refractory circulatory failure. Int Heart J, 2010, 51(2): 116-120.
[64]  61. Franchineau G, Bréchot N, Lebreton G, et al. Bedside contribution of electrical impedance tomography to set positive end-expiratory pressure for ECMO-treated severe ARDS patients. Am J Respir Crit Care Med, 2017 Jan 19. Available at: http://www. atsjournals.org/doi/abs/10.1164/rccm.201605-1055OC?url_ ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_ pub%3dpubmed.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133