全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

Parkin依赖的线粒体自噬在慢性阻塞性肺疾病中的研究进展

DOI: doi:10.7507/1671-6205.2016144

Full-Text   Cite this paper   Add to My Lib

Abstract:

References

[1]  15. Narendra D, Tanaka A, Suen DF, et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol, 2008, 183:795-803.
[2]  19. Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol, 2010, 8:e1000298.
[3]  20. Gong G, Song M, Csordas G, et al. Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science, 2015, 350:aad2459.
[4]  21. Dorn GW Ⅱ. Parkin-dependent mitophagy in the heart. J Mol Cell Cardiol, 2015, 95:42-49.
[5]  22. Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ, 2013, 20:31-42.
[6]  41. Hoshino A, Mita Y, Okawa Y, et al. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat Commun, 2013, 4:2308.
[7]  1. Youle RJ, van der Bliek AM. Mitochondrial fission, fusion and stress. Science, 2012, 337:1062-1065.
[8]  2. 刘静霞.抑癌基因p53与线粒体自噬特异性通路.医学信息, 2013, 16:112.
[9]  4. Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, aging. Rejuvenation Res, 2005, 8:3-5.
[10]  5. 郑晨曦, 张建平, 姚伟伟, 等.线粒体自噬与神经退行性疾病.中华神经外科疾病研究杂志, 2015, 14:286-287.
[11]  6. Springer W, Kahle PJ. Regulation of PINK1-Parkin-mediated mitophagy. Autophagy, 2011, 7:266-278.
[12]  7. Moore DJ. Parkin:a multifaceted ubiquitin ligase. Biochem Soc Trans, 2006, 34:749-753.
[13]  8. Lin W, Kang UJ. Characterization of PINK1 processing, stability and subcellular localization. J Neurochem, 2008, 106:464-474.
[14]  9. Valente EM, Abou-Sleiman PM, Capulo V, et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science, 2004, 304:1158-1160.
[15]  10. Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 1998, 392:605-608.
[16]  11. Vives-Bauza C, de Vries RL, Tocilescu M, et al. PINK1/Parkin direct mitochondria to autophagy. Autophagy, 2010, 6:315-316.
[17]  12. Abeliovich A. Parkinson's disease:mitochondrial damage control. Nature, 2010, 463:744-745.
[18]  13. Geisler S, Holmstrom KM, Skujat D, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol, 2010, 12:119-131.
[19]  14. Ziviani E, Tao RN, Whitworth AJ. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci USA, 2010, 107:5018-5023.
[20]  3. Jia L, Liu Z, Sun L, et al. Acrolein, a toxicant in cigarette smoke, causes oxidative damage and mitochondrial dysfunction in RPE cells:protection by (R)-alpha-lipoic acid. Invest Ophthalmol Vis Sci, 2007, 48:339-348.
[21]  16. Jin SM, Youle RJ. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy, 2013, 9:1750-1757.
[22]  17. Dorn GW, Kitsis RN. The mitochondrial dynamism-mitophagy-cell death interactome:multiple roles performed by members of a mitochondrial molecular ensemble. Circ Res, 2015, 116:167-182.
[23]  18. Shirihai OS, Song M, Dorn GW. How mitochondrial dynamism orchestrates mitophagy. Circ Res, 2015, 116:1835-1849.
[24]  23. Wong ES, Tan JM, Wang C, et al. Relative sensitivity of parkin and other cysteine-containing enzymes to stress-induced solubility alterations. Biol Chem, 2007, 282:12310-12318.
[25]  24. Ahmad T, Sundar IK, Lerner CA, et al. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence:implications for chronic obstructive pulmonary disease. FASEB J, 2015, 29:2912-2929.
[26]  25. Nyunoya T, Mebratu Y, Contreras A, et al. Molecular processes that drive cigarette smoke-induced epithelial cell fate of the lung. Am J Respir Cell Mol Biol, 2014, 50:471-482.
[27]  26. Yao H, Chung S, Hwang J, et al. SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice. J Clin Invest, 2012, 122:2032-2045.
[28]  27. Hara H, Araya J, Takasaka N, et al. Involvement of creatine kinase B in cigarette smoke-induced bronchial epithelial cell senescence. Am J Respir Cell Mol Biol, 2012, 46:306-312.
[29]  28. Nyunoya T, Monick MM, Klingelhutz AL, et al. Cigarette smoke induces cellular senescence. Am J Respir Cell Mol Biol, 2006, 35:681-688.
[30]  29. Nyunoya T, Monick MM, Klingelhutz AL, et al. Cigarette smoke induces cellular senescence via Werner's syndrome protein down-regulation. Am J Respir Crit Care Med, 2009, 179:279-287.
[31]  30. Komatsu M, Ichimura Y. Selective autophagy regulates various cellular functions. Genes Cells, 2010, 15:923-933.
[32]  31. Rana A, Rera M, Walker DW. Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc Natl Acad Sci USA, 2013, 110:8638-8643.
[33]  32. Saini N, Georgiev O, Schaffner W. The parkin mutant phenotype in the fly is largely rescued by metal-responsive transcription factor (MTF-1). Mol Cell Biol, 2011, 31:2151-2161.
[34]  33. Tait SW, Green DR. Mitochondria and cell signalling. J Cell Sci, 2012, 125:807-815.
[35]  34. Guo L, Li L, Wang W, et al. Mitochondrial reactive oxygen species mediates nicotine-induced hypoxia-inducible factor-1a expression in human non-small cell lung cancer cells. Biochim Biophys Acta, 2012, 1822:852-861.
[36]  35. Zuckerbraun BS, Chin BY, Bilban M, et al. Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species. FASEB J, 2007, 21:1099-1106.
[37]  36. 刘风仙, 宋扬.刺参酸性黏多糖对宫颈癌HeLa细胞凋亡及Bax、Bcl-2基因表达的影响.实用医学杂志, 2010, 26:2089-2091.
[38]  37. Hwang JW, Yao H, Caito S, et al. Redox regulation of IRT1 in inflammation and cellular senescence. Free Radic Biol Med, 2013, 61:95-110.
[39]  38. Yao H, Sundar IK, Ahmad T, et al. SIRT1 protects against cigarette smoke-induced lung oxidative stress via a FOXO3-dependent mechanism. Am J Physiol Lung Cell Mol Physiol, 2014, 306:L816-L828.
[40]  39. Aravamudan B, Kiel A, Freeman M, et al. Cigarette smoke-induced mitochondrial fragmentation and dysfunction in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol, 2014, 306:L840-L854.
[41]  40. Hoffmann RF, Zarrintan S, Brandenburg SM, et al. Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells. Respir Res, 2013, 14:92-97.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133