全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

自噬-溶酶体系统在慢性阻塞性肺疾病大鼠骨骼肌萎缩中的作用机制

DOI: doi:10.7507/1671-6205.2015132

Keywords: 慢性阻塞性肺疾病, 大鼠, 骨骼肌, 萎缩, 自噬-溶酶体系统

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的探讨自噬-溶酶体系统在慢性阻塞性肺疾病(简称慢阻肺)大鼠骨骼肌萎缩中的作用机制。 方法采用单纯熏香烟法复制慢阻肺大鼠动物模型。采用Real time PCR,Western blot技术检测大鼠趾长伸肌中FOXO转录因子以及自噬相关基因Bnip3、Beclin1、p62、MAP-LC3Ⅱ/Ⅰ、Atg5的mRNA及蛋白表达,探讨自噬-溶酶体系统在慢阻肺大鼠骨骼肌萎缩中的作用机制,进一步探索骨骼肌萎缩的机制。用透射电镜观察对照组和实验组大鼠趾长伸肌组织切片及肺组织切片中的变化。 结果Real time PCR分析结果显示,实验组大鼠趾长伸肌组织中FOXO转录因子以及自噬相关基因Bnip3、Beclin1、p62、Atg5的mRNA表达实验组显著高于对照组(P均<0.05,其中Bnip3两组对照P均<0.01)。两组大鼠MAP-LC3Ⅱ/Ⅰ的mRNA表达比较差异无统计学意义(P>0.05)。Western blot分析结果显示,实验组大鼠趾长伸肌组织中FOXO转录因子以及自噬相关基因Bnip3、Beclin1、p62、MAP-LC3Ⅱ/Ⅰ、Atg5的蛋白表达慢阻肺组显著高于对照组(P均<0.05,其中Bnip3,MAP-LC3Ⅱ/Ⅰ、Beclin1两组对照P均<0.01)。透射电镜下,相比于对照组,实验组大鼠趾长伸肌胞浆内自噬溶酶体增多,肺组织切片中发现肺组织纤维化和炎症细胞增多。 结论实验组大鼠趾长伸肌组织内自噬-溶酶体系统被激活,可能是骨骼肌萎缩的机制之一

References

[1]  1. ?Burtin C, Decramer M, Gosselink R, et al. Rehabilitation and acute exacerbations. Eur Respir J,2011,38:702-712.
[2]  2. Macklem PT. Therapeutic implications of the pathophysiology of COPD. Eur Respir J,2010,35:676-680.
[3]  3. Barnes PJ, Celli BR.Systemic manifestations and comorbidities of COPD. Eur Respir J,2009,33:1165-1185.
[4]  4. Debigaré R, Marquis K, C?té CH, et al. Catabolic/anabolic balance and muscle wasting in patients with COPD. Chest,2003,124:83-89.
[5]  5. 杨天芸,徐卫国,罗勇,等.慢性阻塞性肺病大鼠骨骼肌蛋白降解的变化.上海交通大学学报(医学版),2008,26:525-531.
[6]  6. 韩锋锋,徐卫国,崔志磊,等.AKT/FOXOs/atrogin-1/MuRF1信号通路在COPD大鼠骨骼肌萎缩中的作用.中国呼吸与危重监护杂志,2013,12:217-222.
[7]  7. 杨天芸,罗勇,徐卫国.慢性阻塞性肺病大鼠骨骼肌肌纤维类型和运动终板的变化.中国全科医学,2008,11:467-469.
[8]  8. Raguso CA, Luthy C. Nutritional status in chronic obstructive pulmonary disease:role of hypoxia. Nutrition,2011,27:138-143.
[9]  9. Kim HC, Mofarrahi M, Hussain SN. Skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis,2008,3:637-658.
[10]  10. Sandri M. Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda),2008,23:160-170.
[11]  11. Taillandier D, Combaret L, Pouch MN, et al. The role of ubiquitin-proteasome-dependent proteolysis in the remodelling of skeletal muscle. Proc Nutr Soc,2004,63:357-361.
[12]  12. McKinnell IW, Rudnicki MA. Molecular mechanisms of muscle atrophy. Cell,2004,119:907-910.
[13]  13. Ottenheijm CA, Heunks LM, Li YP, et al. Activation of the ubiquitin-proteasome pathway in the diaphragm in chronic obstructive pulmonary disease. Am J Respir Crit Care Med,2006,174:997-1002.
[14]  14. 韩锋锋,罗勇,徐卫国.慢性阻塞性肺疾病大鼠骨骼肌组织泛素系统基因及蛋白表达变化的研究.上海医学,2008,31:571-574.
[15]  15. 韩锋锋,徐卫国,罗勇,等.COPD大鼠膈肌组织泛素-蛋白酶体途径的研究.中国呼吸与危重监护杂志,2010,9:141-144.
[16]  16. 韩锋锋,罗勇,杨天芸,等.COPD大鼠骨骼肌组织20s蛋白酶体C2亚基的基因及蛋白表达变化的研究.中国全科医学,2010,13:3289-3292.
[17]  17. Doucet M, Dubé A, Joanisse DR, et al. Atrophy and hypertrophy signalling of the quadriceps and diaphragm in COPD. Thorax,2010,65:963-970.
[18]  18. Testelmans D, Crul T, Maes K, et al. Atrophy and hypertrophy signaling in the diaphragm of patients with COPD. Eur Respir J,2010,35:549-556.
[19]  19. Rubinsztein DC, Mari?o G, Kroemer G. Autophagy and aging. Cell,2011,146:682-695.
[20]  20. 黄娟,袁伟杰.骼肌萎缩中的自噬现象及在慢性肾脏病中的研究前景.中国医学杂志,2013,93:1758-1760.
[21]  21. Lecker SH, Jagoe RT, Gilbert A, et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J,2004,18:39-51.
[22]  22. Mammucari C, Milan G, Romanello V, et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab,2007,6:458-471.
[23]  23. Zhao J, Brauh JJ, Sehiht A, et al. FoxO3 coordinately activates Protein degradation by the autophgic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab,2007,6:472-483.
[24]  24. Hussain SN, Mofarrahi M, Sigala I, et al. Mechanical ventilation-induced diaphragm disuse in humans triggers autophagy. Am J Respir Crit Care Med,2010,182:1377-1386.
[25]  25. Carmignac V, Svensson M, K?rner Z, et al. Autophagy is increased in laminin α2 chain-deficient muscle and its inhibition improves muscle morphology in a mouse model of MDC1A. Hum Mol Genet,2011,20:4891-4902.
[26]  26. Dobrowolny G, Aucello M, Rizzuto E, et al. Skeletal muscle is a primary target of SOD1G93A-mediated toxicity. Cell Metab,2008,8:425-436.
[27]  27. She P, Zhang Z, Marchionini D, et al. Molecular characterization of skeletal muscle atrophy in the R6/2 mouse model of Huntington's disease. Am J Physiol Endocrinol Metab,2011,301:E49-E61.
[28]  28. Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem,2007,282:24131-24145.
[29]  29. Tassa A, Roux MP, Attaix D, et al. Class Ⅲ phosphoinositide 3-kinase--Beclin1 complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes. Biochem J,2003,376:577-586.
[30]  30. 徐俊,黄秀兰.SIRT1-FoxO-自噬通路研究进展.中国药理学通报,2014,30:901-904.
[31]  31. Piétri-Rouxel F, Gentil C, Vassilopoulos S, et al. DHPR alpha1S subunit controls skeletal muscle mass and morphogenesis. EMBO J,2010,29:643-654.
[32]  32. Chen ZH, Kim HP, Sciurba FC, et al. Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PLoS One,2008,3:e3316.
[33]  33. Chen ZH, Lam HC, Jin Y, et al. Autophagy protein microtubule-associated protein 1 light chain-3B (LC3B) activates extrinsic apoptosis during cigarette smoke-induced emphysema. Proc Natl Acad Sci USA,2010,107:18880-18885.
[34]  34. Clague MJ, Urbe S. Ubiquitin:same molecule, different degradation pathways. Cell,2010,143:682-685.
[35]  35. Nedelsky NB, Todd PK, Taylor JP. Autophagy and the ubiquitin-proteasome system:collaborators in neuroprotection. Biochim Biophys Acta,2008,1782:691-699.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133