目的研究 CD73 在间歇性低氧合并高脂饮食条件下大鼠心脏损伤中的表达及意义。 方法建立大鼠慢性间歇性低氧合并高脂饮食模型。将 SPF 级健康雄性 Wistar 大鼠 24 只随机分为 4 组,每组 6 只。A 组(常氧及普通饮食);B 组(常氧及高脂饮食);C 组(间歇性低氧及普通饮食);D 组(间歇性低氧及高脂饮食)。在实验 6 周后,取各组大鼠血清检测血脂(甘油三酯、低密度脂蛋白胆固醇)水平,光镜下观察大鼠心肌形态学变化,免疫组化和蛋白印迹检测 CD73 蛋白在各组大鼠心肌细胞中的表达水平。 结果4 组大鼠血脂水平比较,差异有统计学意义(均 P<0.05)。HE 结果显示:A 组心肌细胞未见明显异常; B 组和 C 组中可见部分心肌纤维排列紊乱,局灶性变性坏死;D 组心肌细胞损伤最为明显,可见肌纤维排列紊乱,纵横纹不清,部分肌纤维明显溶解。免疫组化显示,与 A 组比较,B、C、D 组心肌细胞 CD73 蛋白表达水平均明显升高(均 P<0.01);与 B 组和 C 组比较,D 组 CD73 蛋白表达水平明显升高(均 P<0.01)。蛋白印迹也显示出一致的结果:与 A 组比较,B、C 组 CD73 蛋白表达水平均显著升高(均 P <0.05),D 组 CD73 蛋白表达水平升高更为显著( P<0.01);与 B 组和 C 组比较,D 组 CD73 蛋白表达水平明显升高(均 P <0.01)。 结论慢性间歇性低氧、高脂饮食可以引起心肌细胞的损伤和心肌细胞中 CD73 表达上调
References
[1]
2. Wang H, Tian JL, Feng SZ, et al. The organ specificity in pathological damage of chronic intermittent hypoxia: an experimental study on rat with high-fat diet. Sleep Breath, 2013, 17(3): 957-965.
4. Antonioli L, Pacher P, Vizi ES, et al. CD39 and CD73 in immunity and inflammation. Trends in Molecular Medicine, 2013, 19(6): 355.
[4]
5. Alam MS, Kuo JL, Ernst PB, et al. Ecto-5'-nucleotidase (CD73) regulates host inflammatory responses and exacerbates murine salmonellosis. Sci Rep, 2014, 4: 4486.
[5]
6. Zhu J, Zeng Y, Li W, et al. CD73/NT5E is a target of miR-30a-5p and plays an important role in the pathogenesis of non-small cell lung cancer. Mol Cancer, 2017, 16(1): 34.
[6]
7. Pettengill M, Robson S, Tresenriter M, et al. Soluble ecto-5'-nucleotidase (5'-NT), alkaline phosphatase, and adenosine deaminase (ADA1) activities in neonatal blood favor elevated extracellular adenosine. J Biol Chem, 2013, 288(38): 27315-27326.
[7]
8. Kaniewska E, Sielicka A, Sarathchandra P, et al. Immunohistochemical and functional analysis of ectonucleoside triphosphate diphosphohydrolase 1 (CD39) and ecto-5'-nucleotidase (CD73) in pig aortic valves. Nucleosides Nucleotides Nucleic Acids, 2014, 33(4-6): 305-312.
[8]
9. Wheeler DG, Joseph ME, Mahamud SD, et al. Transgenic swine: expression of human CD39 protects against myocardial injury. J Mol Cell Cardiol, 2012, 52(5): 958-961.
11. Wang X, Yu Q, Yue H, et al. Effect of Intermittent Hypoxia and Rimonabant on Glucose Metabolism in Rats: Involvement of Expression of GLUT4 in Skeletal Muscle. Medical Science Monitor International Medical Journal of Experimental & Clinical Research, 2015, 21: 3252-3260.
[11]
14. Savransky V, Nanayakkara A, Li J, et al. Chronic intermittent hypoxia induces atherosclerosis. Am J Respir Crit Care Med, 2007, 175(12): 1290-1297.
[12]
15. Savransky V, Bevans S, Nanayakkara A, et al. Chronic intermittent hypoxia causes hepatitis in a mouse model of diet-induced fatty liver. Am J Physiol Gastrointest Liver Physiol, 2007, 293(4): G871-877.
17. Maruyama K, Morishita E, Sekiya A, et al. Plasma levels of platelet-derived microparticles in patients with obstructive sleep apnea syndrome. J Atheroscler Thromb, 2012, 19(1): 98-104.
20. Catala R, Villoro R, Merino M, et al. Cost-effectiveness of Continuous Positive Airway Pressure Treatment in Moderate-Severe Obstructive Sleep Apnea Syndrome. Arch Bronconeumol, 2016, 52(9): 461-469.
[18]
21. Chang YL, Tseng TM, Chen PY, et al. Using temperature-time integration as a critical parameter in using monopolar radiofrequency ablations. Eur Arch Otorhinolaryngol, 2014, 271(7): 1973-1979.
24. Covarrubias R, Chepurko E, Reynolds A, et al. Role of the CD39/CD73 Purinergic Pathway in Modulating Arterial Thrombosis in Mice. Arterioscler Thromb Vasc Biol, 2016, 36(9): 1809-1820.
[22]
25. Wolff G, Truse R, Decking U. Extracellular Adenosine Formation by Ecto-5'-Nucleotidase (CD73) Is No Essential Trigger for Early Phase Ischemic Preconditioning. PLoS One, 2015, 10(8): e0135086.
[23]
26. Ochaion A, Bar-Yehuda S, Cohen S, et al. The A3 adenosine receptor agonist CF502 inhibits the PI3K, PKB/Akt and NF-kappaB signaling pathway in synoviocytes from rheumatoid arthritis patients and in adjuvant-induced arthritis rats. Biochem Pharmacol, 2008, 76(4): 482-494.
[24]
27. Terashima Y, Sato T, Yano T, et al. Roles of phospho-GSK-3beta in myocardial protection afforded by activation of the mitochondrial K ATP channel. J Mol Cell Cardiol, 2010, 49(5): 762-770.
[25]
28. Cai M, Huttinger ZM, He H, et al. Transgenic over expression of ectonucleotide triphosphate diphosphohydrolase-1 protects against murine myocardial ischemic injury. J Mol Cell Cardiol, 2011, 51(6): 927-935.
[26]
29. Jesurum JT, Fuller CJ, Murinova N, et al. Aspirin's effect on platelet inhibition in migraineurs. Headache, 2012, 52(8): 1207-1218.
[27]
30. Motoda C, Ueda H, Hayashi Y, et al. Impact of platelet reactivity to adenosine diphosphate before implantation of drug-eluting stents on subsequent adverse cardiac events in patients with stable angina. Circ J, 2012, 76(3): 641-649.
32. Zukowska P, Kutryb-Zajac B, Jasztal A, et al. Deletion of CD73 in mice leads to Aortic Valve Dysfunction. Biochim Biophys Acta, 2017, :.
[30]
33. Li X, Zhou T, Zhi X, et al. Effect of hypoxia/reoxygenation on CD73 (ecto-5'-nucleotidase) in mouse microvessel endothelial cell lines. Microvasc Res, 2006, 72(1-2): 48-53.
[31]
34. Jalkanen J, Yegutkin GG, Hollmen M, et al. Aberrant circulating levels of purinergic signaling markers are associated with several key aspects of peripheral atherosclerosis and thrombosis. Circ Res, 2015, 116(7): 1206-1215.
[32]
1. Van Eyck A, Van Hoorenbeeck K, De Winter BY, et al. Sleep-disordered breathing, systemic adipokine secretion, and metabolic dysregulation in overweight and obese children and adolescents. Sleep Med, 2017, 30(期): 52-56.
13. Xia Y, Fu Y, Wang Y, et al. Prevalence and Predictors of Atherogenic Serum Lipoprotein Dyslipidemia in Women with Obstructive Sleep Apnea. Sci Rep, 2017, 7: 41687.