2. Inomata M, Kamio K, Azuma A. Pirfenidone inhibits fibrocyte accumulation in the lungs in bleomycin-induced murine pulmonary fibrosis. Respir Res, 2014, 15(1): 1-14.
[2]
5. Mansoor JK, Decile KC, Giri SN, et al. Influence of pirfenidone on airway hyperresponsiveness and inflammation in a Brown-Norway rat model of asthma. Pulm Pharmacol Ther, 2007, 20(6): 660-668.
13. Macías-Barragán J, Sandoval-Rodríguez A, Navarro-Partida J, et al. The multifaceted role of pirfenidone and its novel targets. Fibrogenesis Tissue Repair, 2010, 3(1): 16.
[6]
14. Schaefer CJ, Ruhrmund DW, Pan L, et al. Antifibrotic activities of pirfenidone in animal models. Eur Respir Rev, 2011, 20(120): 85-97.
[7]
15. Li XZ, Feng JC, Hu CP, et al. Effects of Arkadia on airway remodeling through enhancing TGF-β signaling in allergic rats. Lab Invest, 2010, 90(7): 997-1003.
[8]
16. Sutherland ER, Goleva E, King TS, et al. Cluster analysis of obesity and asthma phenotypes. Plos One, 2012, 7(5): e36631.
[9]
17. Bottoms SE, Howell JE, Reinhardt AK, et al. TGF-β isoform specific regulation of airway inflammation and remodelling in a murine model of asthma. Plos One, 2012, 5(3): e9674.
[10]
18. Halwani R, Al-Muhsen S, Al-Jahdali H, et al. Role of transforming growth factor-beta in airway remodeling in asthma. Am J Respir Cell Mol Biol, 2011, 44(2): 127-133.
[11]
19. Panek M, Pietras T, Fabijan A, et al. The NR3C1 glucocorticoid receptor gene polymorphisms may modulate the TGF-beta mRNA expression in asthma patients. Inflammation, 2015, 38(4): 1479.
[12]
20. Lee HY, Kim IK, Yoon HK, et al. Inhibitory effects of resveratrol on airway remodeling by transforming growth factor-β/smad signaling pathway in chronic asthma model. Allergy Asthma Immunol Res, 2017, 9(1): 25-34.
[13]
22. Durrani SR, Viswanathan RK, Busse WW. What effect does asthma treatment have on airway remodeling? Current perspectives. J Allergy Clin Immunol, 2011, 128(3): 439-448.
[14]
23. Takeda Y, Tsujino K, Kijima T, et al. Efficacy and safety of pirfenidone for idiopathic pulmonary fibrosis. Patient Prefer Adherence, 2014, 8(3): 61-70.
26. Kang HS, Rhee CK, Lee HY, et al. Different anti-remodeling effect of nilotinib and fluticasone in a chronic asthma model. Korean J Intern Med, 2016, 31(6): 1150-1158.
[17]
1. ?Umetsu DT. Mechanisms by which obesity impacts upon asthma. Thorax, 2016, 72(2): 174.
[18]
3. Wang J, Yang Y, Xu J, et al. Pirfenidone inhibits migration, differentiation, and proliferation of human retinal pigment epithelial cells in vitro. Mol Vis, 2013, 19(11): 2626-2635.
[19]
4. Hirano A, Kanehiro A, Ono K, et al. Pirfenidone modulates airway responsiveness, inflammation, and remodeling after repeated challenge. Am J Respir Cell Mol Biol, 2006, 35(3): 366-377.
[20]
6. Durcan PJ, Corbett JJ, Wall M. The incidence of pseudotumor cerebri: population studies in Iowa and Louisiana. JAMA Neurol, 1988, 45(8): 875-877.
[21]
7. Han W, Li J, Tang HP, et al. Treatment of obese asthma in a mouse model by simvastatin is associated with improving dyslipidemia and decreasing leptin level. Biochem Biophys Res Commun, 2017, 484(2): 396-402.
[22]
8. Chen M, Lv Z, Zhang W, et al. Triptolide suppresses airway goblet cell hyperplasia and Muc5ac expression via NF-κB in a murine model of asthma. Mol Immunol, 2015, 64(1): 99-105.
[23]
9. Dixon AE, Holguin F, Sood A, et al. An official American Thoracic Society Workshop report: obesity and asthma. Proc Am Thorac Soc, 2010, 7(5): 325-335.
[24]
12. Taguchi Y, Ebina M, Hashimoto S, et al. Efficacy of pirfenidone and disease severity of idiopathic pulmonary fibrosis: extended analysis of phase Ⅲ trial in Japan. Respir Invest, 2015, 53(6): 279-287.
[25]
21. Jiang K, Chen HB, Wang Y, et al. Changes in interleukin-17 and transforming growth factor beta 1 levels in serum and bronchoalveolar lavage fluid and their clinical significance among children with asthma. Transl Pediatrics, 2013, 2(4): 154-159.
[26]
25. Hirota N, Martin JG. Mechanisms of airway remodeling. Chest, 2013, 144(3): 1026-1032.