全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

慢性间歇低氧上调心肌 lncRNA MALAT1 及相关分子的表达

DOI: doi:10.7507/1671-6205.201710025

Keywords: 阻塞性睡眠呼吸暂停, 长链非编码 RNA, 间歇低氧, 高二氧化碳血症, 炎症

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的通过观察长链非编码 RNA(lncRNA)中转移相关肺腺癌转录本 1(MALAT1)及其相关的炎症因子在不同低氧处理后心肌组织中的表达,探讨 MALAT1 在阻塞性睡眠呼吸暂停(OSA)导致心血管并发症中可能的作用机制。方法将成年 SD 大鼠随机分为持续低氧组(CH 组)、间歇低氧组(IH 组)、间歇低氧伴高二氧化碳组(IHH 组)并进行相应低氧处理,设置正常对照组(N 组),每组 8 只。上述处理分别进行 1 周、2 周、3 周后处死大鼠,提取大鼠心肌组织 RNA 样本,采用 qRT-PCR 法检测 MALAT1 基因的表达。结果干预 1 周时低氧处理的各组 MALAT1 基因表达较对照组有升高趋势,但差异无统计学意义。2 周和 3 周时,IHH 组大鼠心肌 MALAT1 基因的表达量较 IH 组、CH 组和 N 组均显著升高(均 P<0.01);IH 组、CH 组大鼠 MALAT1 基因的表达量较 N 组有升高趋势,但差异无统计学意义。低氧处理 3 周 IHH 组缺氧诱导因子-1α、Toll 样受体 4、白细胞介素-6 的 mRNA 表达量均较其他三组显著升高,与 MALAT1 的变化趋势一致。结论心肌 MALAT1 在低氧伴高二氧化碳处理后表达升高,与相关的重要缺氧及炎症因子上调趋势一致,提示 MALAT1 可能是 OSA 心肌免疫损伤的调控因子

References

[1]  1. Drager LF, Togeiro SM, Polotsky VY, et al. Obstructive sleep apnea: a cardiometabolic risk in obesity and the metabolic syndrome. J Am Coll Cardiol, 2013, 62(7): 569-576.
[2]  2. Crifo B, Taylor CT. Crosstalk between toll-like receptors and hypoxia-dependent pathways in health and disease. J Investig Med, 2016, 64(2): 369-375.
[3]  3. Unnikrishnan D, Jun J, Polotsky V. Inflammation in sleep apnea: an update. Rev Endocr Metab Disord, 2015, 16(1): 25-34.
[4]  4. Chen YG, Satpathy AT, Chang HY. Gene regulation in the immune system by long noncoding RNAs. Nat Immunol, 2017, 18(9): 962-972.
[5]  5. Mazidi M, Penson P, Gluba-Brzozka A, et al. Relationship between long noncoding RNAs and physiological risk factors of cardiovascular disease. J Clin Lipidol, 2017, 11(3): 617-623.
[6]  6. Boon RA, Jae N, Holdt L, et al. Long Noncoding RNAs: From Clinical Genetics to Therapeutic Targets?. J Am Coll Cardiol, 2016, 67(10): 1214-1226.
[7]  7. Tripathi V, Ellis JD, Shen Z, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell, 2010, 39(6): 925-938.
[8]  8. Tripathi V, Shen Z, Chakraborty A, et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet, 2013, 9(3): e1003368.
[9]  9. Michalik KM, You X, Manavski Y, et al. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res, 2014, 114(9): 1389-1397.
[10]  10. Luo F, Liu X, Ling M, et al. The lncRNA MALAT1, acting through HIF-1alpha stabilization, enhances arsenite-induced glycolysis in human hepatic L-02 cells. Biochim Biophys Acta, 2016, 1862(9): 1685-1695.
[11]  11. Salle-Lefort S, Miard S, Nolin MA, et al. Hypoxia upregulates Malat1 expression through a CaMKK/AMPK/HIF-1alpha axis. Int J Oncol, 2016, 49(4): 1731-1736.
[12]  12. Liu JY, Yao J, Li XM, et al. Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death Dis, 2014, 5(10): e1506.
[13]  13. Lelli A, Nolan KA, Santambrogio S, et al. Induction of long noncoding RNA MALAT1 in hypoxic mice. Hypoxia(Auckl), 2015, 3(default): 45-52.
[14]  14. Vausort M, Wagner DR, Devaux Y. Long noncoding RNAs in patients with acute myocardial infarction. Circ Res, 2014, 115(7): 668-677.
[15]  15. Puthanveetil P, Chen S, Feng B, et al. Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. J Cell Mol Med, 2015, 19(6): 1418-1425.
[16]  16. Zhao G, Su Z, Song D, et al. The long noncoding RNA MALAT1 regulates the lipopolysaccharide-induced inflammatory response through its interaction with NF-kappaB. FEBS Lett, 2016, 590(17): 2884-2895.
[17]  17. Zhuang YT, Xu DY, Wang GY, et al. IL-6 induced lncRNA MALAT1 enhances TNF-alpha expression in LPS-induced septic cardiomyocytes via activation of SAA3. Eur Rev Med Pharmacol Sci, 2017, 21(2): 302-309.
[18]  18. Zhang X, Tang X, Liu K, et al. Long Noncoding RNA Malat1 Regulates Cerebrovascular Pathologies in Ischemic Stroke. J Neurosci, 2017, 37(7): 1797-1806.
[19]  19. Curley G, Laffey JG, Kavanagh BP. Bench-to-bedside review: carbon dioxide. Crit Care, 2010, 14(2): 220.
[20]  20. Yamaguchi T, Yamazaki T, Nakamura Y, et al. Percutaneous carbon dioxide mist treatment has protective effects in experimental myocardial infarction. J Pharmacol Sci, 2015, 127(4): 474-480.
[21]  21. Laffey JG, Honan D, Hopkins N, et al. Hypercapnic acidosis attenuates endotoxin-induced acute lung injury. Am J Respir Crit Care Med, 2004, 169(1): 46-56.
[22]  22. Brzecka A. Role of hypercapnia in brain oxygenation in sleep-disordered breathing. Acta Neurobiol Exp(Wars), 2007, 67(2): 197-206.
[23]  23. Amato MB, Barbas CS, Medeiros DM, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med, 1998, 338(6): 347-354.
[24]  24. Dergacheva O, Dyavanapalli J, Pinol RA, et al. Chronic intermittent hypoxia and hypercapnia inhibit the hypothalamic paraventricular nucleus neurotransmission to parasympathetic cardiac neurons in the brain stem. Hypertension, 2014, 64(3): 597-603.
[25]  25. Cummins EP, Oliver KM, Lenihan CR, et al. NF-kappaB links CO2 sensing to innate immunity and inflammation in mammalian cells. J Immunol, 2010, 185(7): 4439-4445.
[26]  26. Abolhassani M, Guais A, Chaumet-Riffaud P, et al. Carbon dioxide inhalation causes pulmonary inflammation. Am J Physiol Lung Cell Mol Physiol, 2009, 296(4): L657-665.
[27]  27. Nichol AD, O'Cronin DF, Howell K, et al. Infection-induced lung injury is worsened after renal buffering of hypercapnic acidosis. Crit Care Med, 2009, 37(11): 2953-2961.
[28]  28. Hanly EJ, Mendoza-Sagaon M, Murata K, et al. CO2 pneumoperitoneum modifies the inflammatory response to sepsis. Ann Surg, 2003, 237(3): 343-350.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133