全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

新型股骨近端内侧支撑钢板治疗股骨反转子间骨折的生物力学研究

DOI: doi:10.7507/1002-1892.201609103

Keywords: 股骨反转子间骨折, 股骨近端内侧支撑钢板, 内固定, 生物力学

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的 通过与股骨近端锁定加压钢板(proximal femoral locking compression plate,PFLCP)、股骨近端防旋髓内钉(proximal femoral nail antirotation,PFNA)比较,探讨采用新型股骨近端内侧支撑钢板(proximal femoral medial buttress plate,PFMBP)固定股骨反转子间骨折在生物力学方面的优势。 方法 取 18 具第 4 代 Synbone 人工股骨标准试验骨(左侧)制备 AO 31-A3.1 型股骨反转子间骨折模型后,根据内固定不同随机分为 3 组(n=6),分别为 PFLCP 组、PFNA 组、PFMBP 组。各标本骨折固定后包埋固定,分别行轴向压缩试验、扭转试验及最大轴向压缩破坏试验,计算对应轴向压缩刚度、扭转刚度,记录最大轴向载荷及标本破坏情况。 结果 轴向压缩刚度 PFLCP 组为(109.42±30.14)N/mm,PFNA组为(119.13±29.14)N/mm,PFMBP 组为(162.05±22.05)N/mm,组间比较差异有统计学意义(P<0.05)。同一组中不同扭转角度对应扭矩比较,以及同一扭转角度各组扭矩比较,差异均有统计学意义(P<0.05)。扭转刚度 PFLCP 组为(1.45± 0.44)N·mm/deg,PFNA 组为(1.10±0.13)N·mm/deg,PFMBP 组为(1.36±0.32)N·mm/deg;PFLCP 组、PFMBP 组与 PFNA 组比较,差异均有统计学意义(P<0.05);PFLCP 组及 PFMBP 组比较差异无统计学意义(P>0.05)。最大轴向载荷 PFLCP 组为(1 408.88±0.17)N,PFNA组为(1 696.56± 0.52)N,PFMBP 组为(2 154.65±0.10)N,3 组间比较差异均有统计学意义(P<0.05)。 结论 PFBMP 在轴向压缩刚度和扭转刚度方面优于 PFLCP 及 PFNA,提示维持内侧稳定性对于治疗股骨反转子间骨折具有重要意义

References

[1]  4. Wirtz C, Abbassi F, Evangelopoulos DS, et al. High failure rate of trochanteric fracture osteosynthesis with proximal femoral locking compression plate. Injury, 2013, 44(6): 751-756.
[2]  8. Weiser L, Ruppel AA, Nüchtern JV, et al. Extra-vs. intramedullary treatment of pertrochanteric fractures: a biomechanical in vitro study comparing dynamic hip screw and intramedullary nail. Arch Orthop Trauma Surg, 2015, 135(8): 1101-1106.
[3]  9. Knobe M, Gradl G, Buecking B, et al. Locked minimally invasive plating versus fourth generation nailing in the treatment of AO/OTA 31A2.2 fractures: A biomechanical comparison of PCCP(?) and Intertan nail(?). Injury, 2015, 46(8): 1475-1482.
[4]  10. Evaniew N, Bhandari M. Cochrane in CORR?: Intramedullary nails for extracapsular hip fractures in adults (review). Clin Orthop Relat Res, 2015, 473(3): 767-774.
[5]  11. Makki D, Matar HE, Jacob N, et al. Comparison of the reconstruction trochanteric antigrade nail (TAN) with the proximal femoral nail antirotation (PFNA) in the management of reverse oblique intertrochanteric hip fractures. Injury, 2015, 46(12): 2389-2393.
[6]  13. Peter RE. Open reduction and internal fixation of osteoporotic acetabular fractures through the ilio-inguinal approach: use of buttress plates to control medial displacement of the quadrilateral surface. Injury, 2015, 46 Suppl 1: S2-7.
[7]  14. Chang SM, Zhang YQ, Ma Z, et al. Fracture reduction with positive medial cortical support: a key element in stability reconstruction for the unstable pertrochanteric hip fractures. Arch Orthop Trauma Surg, 2015, 135(6): 811-888.
[8]  16. Wang JQ, Zhao CP, Su YG, et al. Computer-assisted navigation systems for insertion of cannulated screws in femoral neck fractures: a comparison of bi-planar robot navigation with optoelectronic navigation in a Synbone hip model trial. Chin Med J (Engl), 2011, 124(23): 3906-3911.
[9]  17. 张巍, 罗从风, 曾炳芳. 四种不同内固定治疗胫骨平台后外侧剪应力骨折的生物力学研究. 中华创伤骨科杂志, 2010, 12(11): 1069-1073.
[10]  1. Simmermacher RK, Ljungqvist J, Bail H, et al. The new proximal femoral nail antirotation (PFNA?) in daily practice: results of a multicentre clinical study. Injury, 2008, 39(8): 932-939.
[11]  2. Makki D, Matar HE, Jacob N, et al. Comparison of the reconstruction trochanteric antigrade nail (TAN) with the proximal femoral nail antirotation (PFNA) in the management of reverse oblique intertrochanteric hip fractures. Injury, 2015, 46(12): 2389-2393.
[12]  3. Chou DT, Taylor AM, Boulton C, et al. Reverse oblique intertrochanteric femoral fractures treated with the intramedullary hip screw (IMHS). Injury, 2012, 43(6): 817-821.
[13]  5. Streubel PN, Moustoukas MJ, Obremskey WT. Mechanical failure after locking plate fixation of unstable intertrochanteric femur fractures. J Orthop Trauma, 2013, 27(1): 22-28.
[14]  6. Lin SJ, Huang KC, Chuang PY, et al. The outcome of unstable proximal femoral fracture treated with reverse LISS plates. Injury, 2016, 47(10): 2161-2168.
[15]  7. Kuzyk PR, Lobo J, Whelan D, et al. Biomechanical evaluation of extramedullary versus intramedullary fixation for reverse obliquity intertrochanteric fractures. J Orthop Trauma, 2009, 23(1): 31-38.
[16]  12. Irgit K, Richard RD, Beebe MJ, et al. Reverse oblique and transverse intertrochanteric femoral fractures treated with the long cephalomedullary nail. J Orthop Trauma, 2015, 29(9): e299-304.
[17]  15. Heiner AD, Brown TD. Structural properties of a new design of composite replicate femurs and tibias. J Biomech, 2001, 34(6): 773-781.
[18]  18. Luo Q, Yuen G, Lau TW, et al. A biomechanical study comparing helical blade with screw design for sliding hip fixations of unstable intertrochanteric fractures. Scientific World Journal, 2013, 2013: 351936.
[19]  19. Forward DP, Doro CJ, O’Toole RV, et al. A biomechanical comparison of a locking plate, a nail, and a 95° angled blade plate for fixation of subtrochanteric femoral fractures. J Orthop Trauma, 2012, 26(6): 334-340.
[20]  20. Bong MR, Patel V, Iesaka K, et al. Comparison of a sliding hip screw with a trochanteric lateral support plate to an intramedullary hip screw for fixation of unstable intertrochanteric hip fractures: a cadaver study. J Trauma, 2004, 56(4): 791-794.
[21]  21. Fensky F, Nüchtern JV, Kolb JP, et al. Cement augmentation of the proximal femoral nail antirotation for the treatment of osteoporotic pertrochanteric fractures-a biomechanical cadaver study. Injury, 2013, 44(6): 802-807.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133