10. Wang D, Liu Q, Xiao D, et al. Microparticle entrapment for drug release from porous-surfaced bone implants. J Microencapsul, 2015, 32(5): 443-449.
[2]
12. McManamon C, de Silva JP, Delaney P, et al. Characteristics, interactions and coating adherence of heterogeneous polymer/drug coatings for biomedical devices. Mater Sci Eng C Mater Biol Appl, 2016, 59: 102-108.
[3]
13. Xu Z, Lai Y, Wu D, et al. Antibacterial Effects and Biocompatibility of Titania Nanotubes with Octenidine Dihydrochloride/Poly (lactic-co-glycolic acid). Biomed Res Int, 2015, 2015: 836939.
[4]
14. Kumeria T, Mon H, Aw MS, et al. Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties. Colloids Surf B Biointerfaces, 2015, 130: 255-263.
16. Braem A, De Cremer K, Delattin N, et al. Novel anti-infective implant substrates: controlled release of antibiofilm compounds from mesoporous silica-containing macroporous titanium. Colloids Surf B Biointerfaces, 2015, 126: 481-488.
[7]
17. Qu H, Knabe C, Radin S, et al. Percutaneous external fixator pins with bactericidal micron-thin sol-gel films for the prevention of pin tract infection. Biomaterials, 2015, 62: 95-105.
[8]
18. Antoci V, Adams CS, Parvizi J, et al. The inhibition of Staphylococcus epidermidis biofilm formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection. Biomaterials, 2008, 29(35): 4684-4690.
[9]
36. Sirivisoot S, Pareta R, Webster TJ. Electrically controlled drug release from nanostructured polypyrrole coated on titanium. Nanotechnology, 2011, 22(8): 085101.
[10]
38. Pavlukhina S, Lu Y, Patimetha A, et al. Polymer multilayers with pH-triggered release of antibacterial agents. Biomacromolecules, 2010, 11(12): 3448-3456.
4. Hirschfeld J, Akinoglu EM, Wirtz DC, et al. Long-term release of antibiotics by carbon nanotube-coated titanium alloy surfaces diminish biofilm formation by Staphylococcus epidermidis. Nanomedicine, 2017, 13(4): 1587-1593.
[13]
5. Hess U, Mikolajczyk G, Treccani L, et al. Multi-loaded ceramic beads/matrix scaffolds obtained by combining ionotropic and freeze gelation for sustained and tuneable vancomycin release. Mater Sci Eng C Mater Biol Appl, 2016, 67: 542-553.
[14]
6. Ghosh S, Wu V, Pernal S, et al. Self-Setting Calcium Phosphate Cements with Tunable Antibiotic Release Rates for Advanced Antimicrobial Applications. ACS Appl Mater Interfaces, 2016, 8(12): 7691-7708.
9. Fazli Y, Shariatinia Z, Kohsari I, et al. A novel chitosan-polyethylene oxide nanofibrous mat designed for controlled co-release of hydrocortisone and imipenem/cilastatin drugs. Int J Pharm, 2016, 513(1-2): 636-647.
[17]
11. Lv H, Chen Z, Yang X, et al. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation. J Dent, 2014, 42(11): 1464-1472.
2. Gbejuade HO, Lovering AM, Webb JC. The role of microbial biofilms in prosthetic joint infections. Acta Orthop, 2015, 86(2): 147-158.
[20]
8. Fazli Y, Shariatinia Z. Controlled release of cefazolin sodium antibiotic drug from electrospun chitosan-polyethylene oxide nanofibrous Mats. Mater Sci Eng C Mater Biol Appl, 2017, 71: 641-652.
[21]
19. Chen CP, Wickstrom E. Self-protecting bactericidal titanium alloy surface formed by covalent bonding of daptomycin bisphosphonates. Bioconjug Chem, 2010, 21(11): 1978-1986.
[22]
20. Edupuganti OP, Antoci V Jr, King SB, et al. Covalent bonding of vancomycin to Ti6Al4V alloy pins provides long-term inhibition of Staphylococcus aureuscolonization. Bioorg Med Chem Lett, 2007, 17(10): 2692-1696.
[23]
21. Jose B, Antoci V Jr, Zeiger AR, et al. Vancomycin covalently bonded to titanium beads kills Staphylococcus aureus. Chem Biol, 2005, 12(9): 1041-1048.
[24]
22. Pérez-Anes A, Gargouri M, Laure W, et al. Bioinspired Titanium Drug Eluting Platforms Based on a Poly-β-cyclodextrin-Chitosan Layer-by-Layer Self-Assembly Targeting Infections. ACS Appl Mater Interfaces, 2015, 7(23): 12882-12893.
[25]
23. Radin S, Ducheyne P. Controlled release of vancomycin from thin sol-gel films on titanium alloy fracture plate material. Biomaterials, 2007, 28(9): 1721-1729.
[26]
24. Adams CS, Antoci V Jr, Harrison G, et al. Controlled release of vancomycin from thin sol-gel films on implant surfaces successfully controls osteomyelitis. J Orthop Res, 2009, 27(6): 701-709.
[27]
26. Balmayor ER, Tuzlakoglu K, Marques AP, et al. A novel enzymatically-mediated drug delivery carrier for bone tissue engineering applications: combining biodegradable starch-based microparticles and differentiation agents. J Mater Sci Mater Med, 2008, 19(4): 1617-1623.
[28]
28. Yu Q, Cho J, Shivapooja P, et al. Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria. ACS Appl Mater Interfaces, 2013, 5(19): 9295-9304.
[29]
25. Dave R, Jayaraj P, Ajikumar PK, et al. Endogenously triggered electrospun fibres for tailored and controlled antibiotic release. J Biomater Sci Polym Ed, 2013, 24(11): 1305-1319.
29. Qiao M, Chen D, Ma X, et al. Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Int J Pharm, 2005, 294(1-2): 103-112.
[32]
30. Peng KT, Chen CF, Chu IM, et al. Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles. Biomaterials, 2010, 31(19): 5227-5236.
[33]
31. Ding F, Deng H, Du Y, et al. Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale, 2014, 6(16): 9477-9493.
[34]
32. Swanson TE, Cheng X, Friedrich C. Development of chitosan-vancomycin antimicrobial coatings on titanium implants. J Biomed Mater Res A, 2011, 97(2): 167-176.
[35]
33. Shi X, Wu H, Li Y, et al. Electrical signals guided entrapment and controlled release of antibiotics on titanium surface. J Biomed Mater Res A, 2013, 101(5): 1373-1378.
37. Schmidt DJ, Moskowitz JS, Hammond PT. Electrically Triggered Release of a Small Molecule Drug from a Polyelectrolyte Multilayer Coating. Chem Mater, 2010, 22(23): 6416-6425.
[39]
39. Ma L, Liu M, Liu H, et al. In vitro cytotoxicity and drug release properties of pH-and temperature-sensitive core-shell hydrogel microspheres. Int J Pharm, 2010, 385(1-2): 86-91.
[40]
40. Pichavant L, Amador G, Jacqueline C, et al. pH-controlled delivery of gentamicin sulfate from orthopedic devices preventing nosocomial infections. J Control Release, 2012, 162(2): 373-381.
[41]
41. Zhuk I, Jariwala F, Attygalle AB, et al. Self-defensive layer-by-layer films with bacteria-triggered antibiotic release. ACS Nano, 2014, 8(8): 7733-7745.
[42]
42. Hizal F, Zhuk I, Sukhishvili S, et al. Impact of 3D Hierarchical Nanostructures on the Antibacterial Efficacy of a Bacteria-Triggered Self-Defensive Antibiotic Coating. ACS Appl Mater Interfaces, 2015, 7(36): 20304-20313.
[43]
43. Inoue D, Kabata T, Ohtani K, et al. Inhibition of biofilm formation on iodine-supported titanium implants. Int Orthop, 2017, 41(6): 1093-1099.