全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

骨科金属植入物表面载药抗菌涂层的研究进展

DOI: doi:10.7507/1002-1892.201704046

Keywords: 骨科, 金属植入物, 抗菌, 载药涂层

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的 总结近年来骨科金属植入物表面载药抗菌涂层的研究进展。 方法 检索查阅近年来国内外关于骨科金属植入物表面载药抗菌涂层的相关研究报道,对研究现状、分类及发展趋势进行总结。 结果 骨科金属植入物表面载药抗菌涂层在药物释放方式上可分为被动释放型和主动释放型。被动释放型载药涂层在植入体内后,无论植入物周围有无细菌都会持续被动地释放药物;而主动释放型载药涂层在植入物周围无感染时不释放或少量释放所搭载的药物,仅当其周围出现感染时,主动释放搭载药物,实现智能抗菌。 结论 药物的持续稳定释放是各种抗菌涂层需解决的关键问题,能够对细菌响应性释放载药的智能型抗菌涂层是今后载药抗菌涂层的发展方向

References

[1]  10. Wang D, Liu Q, Xiao D, et al. Microparticle entrapment for drug release from porous-surfaced bone implants. J Microencapsul, 2015, 32(5): 443-449.
[2]  12. McManamon C, de Silva JP, Delaney P, et al. Characteristics, interactions and coating adherence of heterogeneous polymer/drug coatings for biomedical devices. Mater Sci Eng C Mater Biol Appl, 2016, 59: 102-108.
[3]  13. Xu Z, Lai Y, Wu D, et al. Antibacterial Effects and Biocompatibility of Titania Nanotubes with Octenidine Dihydrochloride/Poly (lactic-co-glycolic acid). Biomed Res Int, 2015, 2015: 836939.
[4]  14. Kumeria T, Mon H, Aw MS, et al. Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties. Colloids Surf B Biointerfaces, 2015, 130: 255-263.
[5]  15. Jennings JA, Carpenter DP, Troxel KS, et al. Novel Antibiotic-loaded Point-of-care Implant Coating Inhibits Biofilm. Clin Orthop Relat Res, 2015, 473(7): 2270-2282.
[6]  16. Braem A, De Cremer K, Delattin N, et al. Novel anti-infective implant substrates: controlled release of antibiofilm compounds from mesoporous silica-containing macroporous titanium. Colloids Surf B Biointerfaces, 2015, 126: 481-488.
[7]  17. Qu H, Knabe C, Radin S, et al. Percutaneous external fixator pins with bactericidal micron-thin sol-gel films for the prevention of pin tract infection. Biomaterials, 2015, 62: 95-105.
[8]  18. Antoci V, Adams CS, Parvizi J, et al. The inhibition of Staphylococcus epidermidis biofilm formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection. Biomaterials, 2008, 29(35): 4684-4690.
[9]  36. Sirivisoot S, Pareta R, Webster TJ. Electrically controlled drug release from nanostructured polypyrrole coated on titanium. Nanotechnology, 2011, 22(8): 085101.
[10]  38. Pavlukhina S, Lu Y, Patimetha A, et al. Polymer multilayers with pH-triggered release of antibacterial agents. Biomacromolecules, 2010, 11(12): 3448-3456.
[11]  3. 王家琦, 尚剑, 孙晔, 等. 钛合金表面抗菌涂层: 抗菌能力及生物相容性. 中国组织工程研究, 2015, 19(25): 4069-4075.
[12]  4. Hirschfeld J, Akinoglu EM, Wirtz DC, et al. Long-term release of antibiotics by carbon nanotube-coated titanium alloy surfaces diminish biofilm formation by Staphylococcus epidermidis. Nanomedicine, 2017, 13(4): 1587-1593.
[13]  5. Hess U, Mikolajczyk G, Treccani L, et al. Multi-loaded ceramic beads/matrix scaffolds obtained by combining ionotropic and freeze gelation for sustained and tuneable vancomycin release. Mater Sci Eng C Mater Biol Appl, 2016, 67: 542-553.
[14]  6. Ghosh S, Wu V, Pernal S, et al. Self-Setting Calcium Phosphate Cements with Tunable Antibiotic Release Rates for Advanced Antimicrobial Applications. ACS Appl Mater Interfaces, 2016, 8(12): 7691-7708.
[15]  7. 张杭州, 田昂, 梁庆威, 等. 万古霉素/羟基磷灰石/二氧化钛纳米管的抗菌性能. 中国组织工程研究, 2016, 20(25): 3732-3737.
[16]  9. Fazli Y, Shariatinia Z, Kohsari I, et al. A novel chitosan-polyethylene oxide nanofibrous mat designed for controlled co-release of hydrocortisone and imipenem/cilastatin drugs. Int J Pharm, 2016, 513(1-2): 636-647.
[17]  11. Lv H, Chen Z, Yang X, et al. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation. J Dent, 2014, 42(11): 1464-1472.
[18]  1. 谢辉, 张玉勤, 孟增东, 等. β 钛合金特性及其在骨科领域的应用现状和研究进展. 生物骨科材料与临床研究, 2013, 10(6): 29-32.
[19]  2. Gbejuade HO, Lovering AM, Webb JC. The role of microbial biofilms in prosthetic joint infections. Acta Orthop, 2015, 86(2): 147-158.
[20]  8. Fazli Y, Shariatinia Z. Controlled release of cefazolin sodium antibiotic drug from electrospun chitosan-polyethylene oxide nanofibrous Mats. Mater Sci Eng C Mater Biol Appl, 2017, 71: 641-652.
[21]  19. Chen CP, Wickstrom E. Self-protecting bactericidal titanium alloy surface formed by covalent bonding of daptomycin bisphosphonates. Bioconjug Chem, 2010, 21(11): 1978-1986.
[22]  20. Edupuganti OP, Antoci V Jr, King SB, et al. Covalent bonding of vancomycin to Ti6Al4V alloy pins provides long-term inhibition of Staphylococcus aureuscolonization. Bioorg Med Chem Lett, 2007, 17(10): 2692-1696.
[23]  21. Jose B, Antoci V Jr, Zeiger AR, et al. Vancomycin covalently bonded to titanium beads kills Staphylococcus aureus. Chem Biol, 2005, 12(9): 1041-1048.
[24]  22. Pérez-Anes A, Gargouri M, Laure W, et al. Bioinspired Titanium Drug Eluting Platforms Based on a Poly-β-cyclodextrin-Chitosan Layer-by-Layer Self-Assembly Targeting Infections. ACS Appl Mater Interfaces, 2015, 7(23): 12882-12893.
[25]  23. Radin S, Ducheyne P. Controlled release of vancomycin from thin sol-gel films on titanium alloy fracture plate material. Biomaterials, 2007, 28(9): 1721-1729.
[26]  24. Adams CS, Antoci V Jr, Harrison G, et al. Controlled release of vancomycin from thin sol-gel films on implant surfaces successfully controls osteomyelitis. J Orthop Res, 2009, 27(6): 701-709.
[27]  26. Balmayor ER, Tuzlakoglu K, Marques AP, et al. A novel enzymatically-mediated drug delivery carrier for bone tissue engineering applications: combining biodegradable starch-based microparticles and differentiation agents. J Mater Sci Mater Med, 2008, 19(4): 1617-1623.
[28]  28. Yu Q, Cho J, Shivapooja P, et al. Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria. ACS Appl Mater Interfaces, 2013, 5(19): 9295-9304.
[29]  25. Dave R, Jayaraj P, Ajikumar PK, et al. Endogenously triggered electrospun fibres for tailored and controlled antibiotic release. J Biomater Sci Polym Ed, 2013, 24(11): 1305-1319.
[30]  27. 邵丽, 杨银, 邓阳全, 等. 温敏型聚合物 PNIPAAM 的合成及应用研究进展. 化工新型材料, 2008, 36(11): 5-7.
[31]  29. Qiao M, Chen D, Ma X, et al. Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Int J Pharm, 2005, 294(1-2): 103-112.
[32]  30. Peng KT, Chen CF, Chu IM, et al. Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles. Biomaterials, 2010, 31(19): 5227-5236.
[33]  31. Ding F, Deng H, Du Y, et al. Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale, 2014, 6(16): 9477-9493.
[34]  32. Swanson TE, Cheng X, Friedrich C. Development of chitosan-vancomycin antimicrobial coatings on titanium implants. J Biomed Mater Res A, 2011, 97(2): 167-176.
[35]  33. Shi X, Wu H, Li Y, et al. Electrical signals guided entrapment and controlled release of antibiotics on titanium surface. J Biomed Mater Res A, 2013, 101(5): 1373-1378.
[36]  34. 王婉秦, 于德梅, 解云川. 聚吡咯及其共聚物的研究进展. 高分子材料科学与工程, 2011, 27(7): 175-178.
[37]  35. 汝小宁. 基于原电池原理构建聚吡咯药物自动释放体系的研究. 厦门: 厦门大学, 2011.
[38]  37. Schmidt DJ, Moskowitz JS, Hammond PT. Electrically Triggered Release of a Small Molecule Drug from a Polyelectrolyte Multilayer Coating. Chem Mater, 2010, 22(23): 6416-6425.
[39]  39. Ma L, Liu M, Liu H, et al. In vitro cytotoxicity and drug release properties of pH-and temperature-sensitive core-shell hydrogel microspheres. Int J Pharm, 2010, 385(1-2): 86-91.
[40]  40. Pichavant L, Amador G, Jacqueline C, et al. pH-controlled delivery of gentamicin sulfate from orthopedic devices preventing nosocomial infections. J Control Release, 2012, 162(2): 373-381.
[41]  41. Zhuk I, Jariwala F, Attygalle AB, et al. Self-defensive layer-by-layer films with bacteria-triggered antibiotic release. ACS Nano, 2014, 8(8): 7733-7745.
[42]  42. Hizal F, Zhuk I, Sukhishvili S, et al. Impact of 3D Hierarchical Nanostructures on the Antibacterial Efficacy of a Bacteria-Triggered Self-Defensive Antibiotic Coating. ACS Appl Mater Interfaces, 2015, 7(36): 20304-20313.
[43]  43. Inoue D, Kabata T, Ohtani K, et al. Inhibition of biofilm formation on iodine-supported titanium implants. Int Orthop, 2017, 41(6): 1093-1099.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133