目的综述1型神经纤维瘤病(neurofibromatosis type 1, NF1)相关的脊柱畸形致病机制研究进展。 方法广泛查阅近年国内外有关NF1相关脊柱畸形致病机制的文献,对其与脊柱畸形的相互联系、相关致病机制及研究进展进行综述。 结果目前对于NF1患者发生脊柱畸形的致病机制尚未明确,可能与神经纤维瘤直接侵蚀与压迫、椎管内硬脊膜扩张、褪黑素导致的脊柱旁肌肉收缩力下降、骨量减少与骨质疏松、性早熟以及中胚层发育不良有关。 结论NF1患者的众多临床表现可能是导致其脊柱畸形发生的诱因,NF1相关脊柱畸形致病机制的研究将有助于对NF1脊柱畸形的认识、诊断和治疗
References
[1]
4. Tsirikos AI, Saifuddin A, Noordeen MH. Spinal deformity in neurofibromatosis type-1:diagnosis and treatment. Eur Spine J, 2005, 14(5):427-439.
[2]
5. Guha A, Lau N, Huvar I, et al. Ras-GTP levels are elevated in human NF1 peripheral nerve tumors. Oncogene, 1996, 12(3):507-513.
[3]
6. Cho SK, Stoker GE, Bridwell KH. Spinal reconstruction with pedicle screw-based instrumentation and rhBMP-2 in patients with neurofibromatosis and severe dural ectasia and spinal deformity:report of two cases and a review of the literature. J Bone Joint Surg (Am), 2011, 93(15):e86.
[4]
7. Fares Y, Haddad GF, Khazim R, et al. Vertebral scalloping in neurofibromatosis-1. Neurosciences (Riyadh), 2007, 12(2):155-157.
9. Lim C, Kwon K, Lee K. Plexiform neurofibroma treated with pharmacopuncture. J Pharmacopuncture, 2014, 17(3):74-77.
[7]
10. Rutkowski JL, Wu K, Gutmann DH, et al. Genetic and cellular defects contributing to benign tumor formation in neurofibromatosis type 1. Hum Mol Genet, 2000, 9(7):1059-1066.
[8]
11. Zhu Y, Ghosh P, Charnay P, et al. Neurofibromas in NF1:Schwann cell origin and role of tumor environment. Science, 2002, 296(5569):920-922.
[9]
14. Chai G, Liu N, Ma J, et al. MicroRNA-10b regulates tumorigenesis in neurofibromatosis type 1. Cancer Sci, 2010, 101(9):1997-2004.
[10]
16. Schonauer C, Tessitore E, Frascadore L, et al. Lumbosacral dural ectasia in type 1 neurofibromatosis. Report of two cases. J Neurosurg Sci, 2000, 44(3):165-169.
[11]
17. Woon CY. Dural ectasia:a manifestation of type 1 neurofibromatosis. CMAJ, 2010, 182(13):1448.
[12]
19. Kita K, Yamashita K, Abe M, et al. Eight-year follow-up findings of surgical treatment for severe dystrophic changes in the cervical spine associated with neurofibromatosis type I:a case report. J Pediatr Orthop B, 2016.[Epub ahead of print].
[13]
23. Cunnane SC, Manku MS, Horrobin DF. The pineal and regulation of fibrosis:pinealectomy as a model of primary biliary cirrhosis:roles of melatonin and prostaglandins in fibrosis and regulation of T lymphocytes. Med Hypotheses, 1979, 5(4):403-414.
[14]
24. Mizrak B, Parlakpinar H, Acet A, et al. Effects of pinealectomy and exogenous melatonin on rat hearts. Acta Histochem, 2004, 106(1):29-36.
[15]
27. Schindeler A, Little DG. Recent insights into bone development, homeostasis, and repair in type 1 neurofibromatosis (NF1). Bone, 2008, 42(4):616-622.
[16]
28. Halmai V, Szász K, Morava E, et al. Decreased bone mineral density as a risk factor in the development of spinal deformities in neurofibromatosis. Orv Hetil, 2001, 142(52):2893-2897.
[17]
34. Sugatani T, Hruska KA. Akt1/Akt2 and mammalian target of rapamycin/Bim play critical roles in osteoclast differentiation and survival, respectively, whereas Akt is dispensable for cell survival in isolated osteoclast precursors. J Biol Chem, 2005, 280(5):3583-3589.
[18]
35. Rhodes SD, Wu X, He Y, et al. Hyperactive transforming growth factor-betal signaling potentiates skeletal defects in a neurofibromatosis type 1 mouse model. J Bone Miner Res, 2013, 28(12):2476-2489.
[19]
37. Glass DA 2nd, Bialek P, Ahn JD, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell, 2005, 8(5):751-764.
[20]
12. Munchhof AM, Li F, White HA, et al. Neurofibroma-associated growth factors activate a distinct signaling network to alter the function of neurofibromin-deficient endothelial cells. Hum Mol Genet, 2006, 15(11):1858-1869.
[21]
32. Ma J, Li M, Hock J, et al. Hyperactivation of mTOR critically regulates abnormal osteoclastogenesis in neurofibromatosis Type 1. J Orthop Res, 2012, 30(1):144-152.
[22]
33. Glantschnig H, Fisher JE, Wesolowski G, et al. M-CSF, TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death Differ, 2003, 10(10):1165-1177.
[23]
36. Sharma R, Wu X, Rhodes SD, et al. Hyperactive Ras/MAPK signaling is critical for tibial nonunion fracture in neurofibromin-deficient mice. Hum Mol Genet, 2013, 22(23):4818-4828.
[24]
39. Heerv? E, Leinonen P, Kuorilehto T, et al. Neurofibromatosis 1-related osteopenia often progresses to osteoporosis in 12 years. Calcif Tissue Int, 2013, 92(1):23-27.
[25]
40. Seitz S, Schnabel C, Busse B, et al. High bone turnover and accumulation of osteoid in patients with neurofibromatosis 1. Osteoporos Int, 2010, 21(1):119-127.
[26]
41. Bahadir C, Gürleyik G, Ocak E. Neurofibromatosis type 1 and primary hyperparathyroidism with spinal deformity and osteoporosis. Acta Chir Belg, 2009, 109(1):123-125.
[27]
42. Namazi H. Von Recklinghausen disease may be a pineal deficiency disease. Med Hypotheses, 2007, 69(2):458.
[28]
43. Machida M, Dubousset J, Imamura Y, et al. Melatonin. A possible role in pathogenesis of adolescent idiopathic scoliosis. Spine (Phila Pa 1976), 1996, 21(10):1147-1152.
[29]
1. ?Zhou Y, He Y, Sharma R, et al. Hyperactive RAS/PI3-K/MAPK Signaling Cascade in Migration and Adhesion of Nf1 Haploinsufficient Mesenchymal Stem/Progenitor Cells. Int J Mol Sci, 2015, 16(6):12345-12359.
[30]
2. Upadhyaya M, Huson SM, Davies M, et al. An absence of cutaneous neurofibromas associated with a 3-bp inframe deletion in exon 17 of the NF1 gene (c.2970-2972 delAAT):evidence of a clinically significant NF1 genotype-phenotype correlation. Am J Hum Genet, 2007, 80(1):140-151.
[31]
3. Abdel-Wanis ME, Kawahara N. Aetiology of spinal deformities in neurofibromatosis 1:new hypotheses. Med Hypotheses, 2001, 56(3):400-404.
[32]
13. Pasmant E, Sabbagh A, Masliah-Planchon J, et al. Role of noncoding RNA ANRIL in genesis of plexiform neurofibromas in neurofibromatosis type 1. J Natl Cancer Inst, 2011, 103(22):1713-1722.
[33]
15. Wang PW, Pan TL, Lin CH, et al. Characterization of plasma protein profiles from patients with neurofibromatosis I. Clin Chim Acta, 2007, 380(1-2):139-144.
[34]
18. Lee WJ, Park OJ, Won CH, et al. Neurofibromatosis type 1 with dural ectasia. J Dermatol, 2012, 39(7):655-656.
[35]
20. Lovblad KO, Remonda L, Ozdoba C, et al. Dural ectasia of the optic nerve sheath in neurofibromatosis type 1:CT and MR features. J Comput Assist Tomogr, 1994, 18(5):728-730.
[36]
21. García-Estevez DA, Arce-Pérez M. Dural ectasia in the cervical spine and neurofibromatosis type 1. Rev Neurol, 2009, 48(1):51.
25. Chaglassian JH, Riseborough EJ, Hall JE. Neurofibromatous scoliosis. Natural history and results of treatment in thirty-seven cases. J Bone Joint Surg (Am), 1976, 58(5):695-702.
[39]
26. Kossler N, Stricker S, R?delsperger C, et al. Neurofibromin (Nf1) is required for skeletal muscle development. Hum Mol Genet, 2011, 20(14):2697-2709.
[40]
29. Heerv? E, Alanne MH, Peltonen S, et al. Osteoclasts in neurofibromatosis type 1 display enhanced resorption capacity, aberrant morphology, and resistance to serum deprivation. Bone, 2010, 47(3):583-590.
[41]
30. He Y, Rhodes SD, Chen S, et al. c-Fms signaling mediates neurofibromatosis Type-1 osteoclast gain-in-functions. PLoS One, 2012, 7(11):e46900.
[42]
31. He Y, Staser K, Rhodes SD, et al. Erk1 positively regulates osteoclast differentiation and bone resorptive activity. PLoS One, 2011, 6(9):e24780.
[43]
38. Sullivan K, El-Hoss J, Little DG, et al. JNK inhibitors increase osteogenesis in Nf1-deficient cells. Bone, 2011, 49(6):1311-1316.
[44]
44. Cheung KM, Wang T, Hu YG, et al. Primary thoracolumbar scoliosis in pinealectomized chickens. Spine (Phila Pa 1976), 2003, 28(22):2499-2504.
[45]
45. Boulanger JM, Larbrisseau A. Neurofibromatosis type 1 in a pediatric population:Ste-Justine's experience. Can J Neurol Sci, 2005, 32(2):225-231.
[46]
46. Virdis R, Sigorini M, Laiolo A, et al. Neurofibromatosis type 1 and precocious puberty. J Pediatr Endocrinol Metab, 2000, 13 Suppl 1:841-844.
[47]
47. Virdis R, Street ME, Bandello MA, et al. Growth and pubertal disorders in neurofibromatosis type 1. J Pediatr Endocrinol Metab, 2003, 16 Suppl 2:289-292.
[48]
49. Sabbagh A, Pasmant E, Laurendeau I, et al. Unravelling the genetic basis of variable clinical expression in neurofibromatosis 1. Hum Mol Genet, 2009, 18(15):2768-2778.
[49]
48. Khoo Bao JN, Ogunwale B, Huson SM, et al. Spinal bone defects in neurofibromatosis type I with dural ectasia:stress fractures or dysplastic? A case series. Eur Radiol, 2013, 23(12):3418-3421.
[50]
50. Pasmant E, Sabbagh A, Vidaud M, et al. ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J, 2011, 25(2):444-448.