全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

器械打磨法制备大鼠脊髓损伤后重建排便功能模型的实验研究

DOI: doi:10.7507/1002-1892.20160232

Keywords: 动物模型, 脊髓损伤, 排便功能重建, 器械打磨法, 钳咬法, 大鼠

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的通过与传统钳咬法比较,探讨器械打磨法制备大鼠脊髓损伤后排便功能模型的可行性及优势。 方法取成年雌性SD大鼠40只,体质量250~300 g,随机分为2组,每组20只。实验组采用器械打磨法打开椎板,暴露马尾神经,10倍显微镜下将双侧L5与S1前后神经根分别作端端吻合,最后在L5与L6之间离断马尾神经(S1除外)。对照组采用传统钳咬法打开椎板,其余处理方法与实验组一致。记录并比较两组手术时间、术中出血量以及术后3 d大鼠情况。 结果实验组手术时间为(93.05±7.60)min,较对照组(131.30±11.68)min明显缩短;术中出血量为(4.33±0.46)mL,明显低于对照组的(7.36±0.58)mL;以上两指标比较差异均有统计学意义(t=12.279,P=0.000;t=18.293,P=0.000)。术后3 d,实验组18只大鼠存活,存活率为90%;对照组12只大鼠存活,存活率为60%;两组术后3 d大鼠存活率比较,差异有统计学意义(χ2=4.800,P=0.028)。 结论器械打磨法制备大鼠脊髓损伤后重建排便功能模型可行,与传统钳咬法比较具有手术时间短、术中出血少及术后大鼠死亡率低等优点;但该方法有一定学习曲线且对术者显微外科技术要求较高

References

[1]  1. ?Simpson LA, Eng JJ, Hsieh JT, et al. The health and life priorities of individuals with spinal cord injury:a systematic review. J Neurotrauma, 2012, 29(8):1548-1555.
[2]  8. Lin H, Hou C, Chen A, et al. Innervation of reconstructed bladder above the level of spinal cord injury for inducing micturition by contractions of the abdomen-to-bladder reflex arc. Neurosurgery, 2010, 66(5):948-952.
[3]  9. Lin H, Hou C. Transfer of normal S1 nerve root to reinnervate atonic bladder due to conus medullaris injury. Muscle Nerve, 2013, 47(2):241-245.
[4]  14. 纪江峰, 冯世庆.脊髓损伤动物模型研究进展.中华实验外科杂志, 2006, 23(9):1151-1152.
[5]  15. 王海峰, 方健.脊髓损伤动物模型的研究现状.实用骨科杂志, 2010, 17(1):44-47.
[6]  16. 王磊, 刘晓林, 陈明, 等.经关节突切除制作大鼠脊髓损伤动物模型.中华实验外科杂志, 2011, 28(12):2260.
[7]  17. 刘小康, 徐建广, 连小峰, 等.大鼠钳夹式急性脊髓损伤模型的制备与评价.中国矫形外科杂志, 2012, 20(14):1318-1322.
[8]  18. Zhang YP, Iannotti C, Shields LB, et al. Dural closure, cord approximation, and clot removal:enhancement of tissue sparing in a novel laceration spinal cord injury model. J Neurosurg, 2004, 100(4 Suppl Spine):343-352.
[9]  12. Tran AP, Silver J. Neuroscience. Systemically treating spinal cord injury. Science, 2015, 348(6232):285-286.
[10]  2. Vercelli A, Boido M. Spinal Cord Injury//Neurobiology of Brain Disorders. USA:Elsevier Inc., 2015:207-218.
[11]  3. Lee BB, Cripps RA, Fitzharris M, et al. The global map for traumatic spinal cord injury epidemiology:update 2011, global incidence rate. Spinal Cord, 2014, 52(2):110-116.
[12]  4. Xiao CG, Godec CJ. A possible new reflex pathway for micturition after spinal cord injury. Paraplegia, 1994, 32(5):300-307.
[13]  5. Xiao CG, Groat WCD, Godec CJ, et al. "Skin-CNS-bladder" reflex pathway for micturition after spinal cord injury and its underlying mechanisms. J Urol, 1999, 162(3 Pt 1):936-942.
[14]  6. Xiao CG, Du MX, Dai C, et al. An artificial somatic-central nervous system-autonomic reflex pathway for controllable micturition after spinal cord injury:preliminary results in 15 patients. J Urol, 2003, 170(4 Pt 1):1237-1241.
[15]  7. Lin H, Hou C, Zhen X. Bypassing spinal cord injury:surgical reconstruction of afferent and efferent pathways to the urinary bladder after conus medullaris injury in a rat model. J Reconstr Microsurg, 2008, 24(8):575-581.
[16]  10. Javidan AN, Mazel K, Latifi S, et al. Outcomes of implementation of sacral nerve stimulation on urination, defecation, and sexual function in patients with spinal cord injury. Int J Colorectal Dis, 2014, 29(12):1577-1578.
[17]  11. Rasmussen MM, Krogh K, Clemmensen D, et al. Colorectal transport during defecation in subjects with supraconal spinal cord injury. Spinal cord, 2013, 51(9):683-687.
[18]  13. 吴卓, 汪玉良.脊髓损伤动物模型的研究进展.中国矫形外科杂志, 2014, 22(12):1086-1089.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133