全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

三种亚型软骨组织来源干细胞的分离培养及鉴定

DOI: doi:10.7507/1002-1892.20150104

Keywords: 软骨组织工程, 软骨干细胞, 软骨亚型, 纤维连接蛋白

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的分离培养猪不同亚型软骨组织(弹性软骨、透明软骨以及纤维软骨)来源干细胞并鉴定,为软骨组织工程提供理想种子细胞。 方法利用纤维连接蛋白黏附法分别从猪耳软骨、关节软骨以及椎间盘软骨中分离培养干细胞,并进行传代。倒置相差显微镜下观察细胞形态变化,流式细胞术鉴定细胞表面抗原表达水平(阳性标志物CD29、CD90及阴性标志物CD34、CD45),单克隆形成实验鉴定软骨干细胞单克隆形成能力。三向诱导分化鉴定软骨来源干细胞的成软骨、成骨及成脂多向分化潜能。RT-PCR检测成骨(Ⅰ型胶原、Ⅹ型胶原)、成软骨[蛋白聚糖(Aggrecan)、Ⅱ型胶原]、成脂[脂联素(Adiponectin)、脂肪酸合成酶(fatty acid synthase,FAS)]相关基因表达,并以猪BMSCs作为对照。 结果通过纤维连接蛋白黏附法分别从耳软骨(弹性软骨)、关节软骨(透明软骨)、椎间盘软骨(纤维软骨)分选出一群细胞,细胞高表达干细胞表面阳性标志物CD29、CD90,几乎不表达干细胞表面阴性标志物CD34、CD45。经过体外2周培养,单个细胞均能形成细胞克隆。三向诱导分化显示软骨来源的干细胞具备成软骨、成骨和成脂分化能力。RT-PCR结果显示,成骨诱导后关节和椎间盘来源软骨干细胞的Ⅰ、Ⅹ型胶原基因相对表达量明显高于BMSCs(P<0.05),耳软骨来源干细胞与BMSCs比较差异无统计学意义(P>0.05);成软骨诱导后,3种亚型软骨组织来源干细胞Aggrecan、Ⅱ型胶原基因相对表达量均高于BMSCs (P<0.05);成脂诱导后,3种来源软骨干细胞Adiponectin及FAS基因相对表达量均低于BMSCs,但比较差异无统计学意义(P>0.05)。 结论不同亚型的猪软骨组织中均存在软骨干细胞,具有干细胞的典型特征

References

[1]  2. Pei M, He F, Li J, et al. Repair of large animal partial-thickness cartilage defects through intraarticular injection of matrix-rejuvenated synovium-derived stem cells. Tissue Eng Part A, 2013, 19(9-10):1144-1154.
[2]  5. Liu M, Yu X, Huang F, et al. Tissue engineering stratified scaffolds for articular cartilage and subchondral bone defects repair. Orthopedics, 2013, 36(11):868-873.
[3]  7. Kreuz PC, Gentili C, Samans B, et al. Scaffold-assisted cartilage tissue engineering using infant chondrocytes from human hip cartilage. Osteoarthritis Cartilage, 2013, 21(12):1997-2005.
[4]  8. Veronesi F, Maglio M, Tschon M, et al. Adipose-derived mesenchymal stem cells for cartilage tissue engineering:state-of-the-art in in vivo studies. J Biomed Mater Res A, 2014, 102(7):2448-2466.
[5]  10. Lee HY, Kopesky PW, Plaas A, et al. Adult bone marrow stromal cell-based tissue-engineered aggrecan exhibits ultrastructure and nanomechanical properties superior to native cartilage. Osteoarthritis Cartilage, 2010, 18(11):1477-1486.
[6]  12. Pelttari K, Winter A, Steck E, et al. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum, 2006, 54(10):3254-3266.
[7]  13. De Bari C, Dell'Accio F, Luyten FP. Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum, 2004, 50(1):142-150.
[8]  20. Due?as F, Becerra V, Cortes Y, et al. Hepatogenic and neurogenic differentiation of bone marrow mesenchymal stem cells from abattoir-derived bovine fetuses. BMC Vet Res, 2014, 10:154.
[9]  21. Wang F, Scoville D, He XC, et al. Isolation and characterization of intestinal stem cells based on surface marker combinations andcolony-formation assay. Gastroenterology, 2013, 145(2):383-395.e1-21.
[10]  1. Jungmann PM, Kraus MS, Nardo L, et al. T(2) relaxation time measurements are limited in monitoring progression, once advanced cartilage defects at the knee occur:longitudinal data from the osteoarthritis initiative. J Magn Reson Imaging, 2013, 38(6):1415-1424.
[11]  3. Reverte-Vinaixa MM, Joshi N, Diaz-Ferreiro EW, et al. Medium-term outcome of mosaicplasty for grade Ⅲ-IV cartilage defects of the knee. J Orthop Surg (Hong Kong), 2013, 21(1):4-9.
[12]  4. Naderi-Meshkin H, Andreas K, Matin MM, et al. Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering. Cell Biol Int, 2014, 38(1):72-84.
[13]  6. Viti F, Scaglione S, Orro A, et al. Guidelines for managing data and processes in bone and cartilage tissue engineering. BMC Bioinformatics, 2014, 15 Suppl 1:S14.
[14]  9. Diekman BO, Christoforou N, Willard VP, et al. Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. Proc Natl Acad Sci U S A, 2012, 109(47):19172-19177.
[15]  11. Cui JH, Park SR, Park K, et al. Preconditioning of mesenchymal stem cells with low-intensity ultrasound for cartilage formation in vivo. Tissue Eng, 2007, 13(2):351-360.
[16]  14. Peng H, Huard J. Muscle-derived stem cells for musculoskeletal tissue regeneration and repair. Transpl Immunol, 2004, 12(3-4):311-319.
[17]  15. Park J, Gelse K, Frank S, et al. Transgene-activated mesenchymal cells for articular cartilage repair:a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells. J Gene Med, 2006, 8(1):112-125.
[18]  16. Dowthwaite GP, Bishop JC, Redman SN, et al. The surface of articular cartilage contains a progenitor cell population. J Cell Sci, 2004, 117(Pt 6):889-897.
[19]  22. Yoon DS, Choi Y, Jang Y, et al. SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells. Stem Cells, 2014, 32(12):3219-3231.
[20]  17. Kobayashi S, Takebe T, Zheng YW, et al. Presence of cartilage stem/progenitor cells in adult mice auricular perichondrium. PLoS One, 2011, 6(10):e26393.
[21]  18. Jiang YZ, Tuan RS. Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nat Rev Rheumatol, 2014.[Epub ahead of print]. doi:10.1038/nrrheum.2014.200.
[22]  19. Paebst F, Piehler D, Brehm W, et al. Comparative immunophenotyping of equine multipotent mesenchymal stromal cells:an approach toward a standardized definition. Cytometry A, 2014, 85 (8):678-687.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133