27. Takase O, Yoshikawa M, Idei M, et al. The role of NF-κB signaling in the maintenance of pluripotency of human induced pluripotent stem cells. PLoS One, 2013, 8(2):e56399.
[3]
29. Gong H, Yan Y, Fang B, et al. Knockdown of nucleosome assembly protein 1-like 1 induces mesoderm formation and cardiomyogenesis via notch signaling in murine-induced pluripotent stem cells. Stem Cells, 2014, 32(7):1759-1773.
[4]
30. Tan KS, Tamura K, Lai MI, et al. Molecular pathways governing development of vascular endothelial cells from ES/iPS cells. Stem Cell Rev, 2013, 9(5):586-598.
[5]
56. Jung O, Hanken H, Smeets R, et al. Osteogenic Differentiation of Mesenchymal Stem Cells in Fibrin-Hydroxyapatite Matrix in a 3-Dimensional Mesh Scaffold. In Vivo, 2014, 28(4):477-482.
[6]
57. Klopper J, Lindenmaier W, Fiedler U, et al. High efficient adenoviral-mediated VEGF and Ang-1 gene delivery into osteogenically differentiated human mesenchymal stem cells. Microvasc Res, 2008, 75(1):83-90.
[7]
58. Chong AK, Ang AD, Goh JC, et al. Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit achilles tendon model. J Bone Joint Surg (Am), 2007, 89(1):74-81.
[8]
59. Ren W, Zhang R, Wu B, et al. Effects of SU5416 and a vascular endothelial growth factor neutralizing antibody on wear debris-induced inflammatory osteolysis in a mouse model. J Inflamm Res, 2011, 3(4):29-38.
[9]
1. Reichert JC, Saifzadeh S, Wullschleger ME, et al. The challenge of establishing preclinical models for segmental bone defect research. Biomaterials, 2009, 30(12):2149-2163.
[10]
2. Chimutengwende-Gordon M, Khan WS. Advances in the use of stem cells and tissue engineering applications in bone repair. Curr Stem Cell Res Ther, 2012, 7(2):122-126.
[11]
4. Towler DA. The osteogenic-angiogenic interface:novel insights into the biology of bone formation and fracture repair. Curr Osteoporos Rep, 2008, 6(2):67-71.
[12]
6. Santos MI, Reis RL. Vascularization in bone tissue engineering:physiology, current strategies, major hurdles and future challenges. Macromol Biosci, 2010, 10(1):12-27.
[13]
7. Khan WS, Longo UG, Adesida A, et al. Stem cell and tissue engineering applications in orthopaedics and musculoskeletal medicine. Stem Cells Int, 2012, 3(3):403170.
[14]
8. Manetti M, Guiducci S, Romano E, et al. Decreased expression of the endothelial cell-derived factor EGFL7 in systemic sclerosis:potential contribution to impaired angiogenesis and vasculogenesis. Arthritis Res Ther, 2013, 15(5):R165.
[15]
9. Toh H, Cao M, Daniels E, et al. Expression of the growth factor progranulin in endothelial cells influences growth and development of blood vessels:a novel mouse model. PLoS One, 2013, 8(5):e64989.
[16]
10. Herzog DP, Dohle E, Bischoff I, et al. Cell communication in a coculture system consisting of outgrowth endothelial cells and primary osteoblasts. Biomed Res Int, 2014, 4(4):320123.
[17]
11. Liu X, Zhang G, Hou C, et al. Vascularized bone tissue formation induced by fiber-reinforced scaffolds cultured with osteoblasts and endothelial cells. Biomed Res Int, 2013, 12(12):854917.
13. Ren L, Kang Y, Browne C, et al. Fabrication, vascularization and osteogenic properties of a novel synthetic biomimetic induced membrane for the treatment of large bone defects. Bone, 2014, 7(64):173-182.
[20]
14. Kaigler D, Pagni G, Park CH, et al. Stem cell therapy for craniofacial bone regeneration:a randomized, controlled feasibility trial. Cell Transplant, 2013, 22(5):767-777.
[21]
15. Kaigler D, Avila G, Wisner-Lynch L, et al. Platelet-derived growth factor applications in periodontal and peri-implant bone regeneration. Expert Opin Biol Ther, 2011, 11(3):375-385.
17. Wenger A, Kowalewski N, Stahl A, et al. Development and characterization of a spheroidal coculture model of endothelial cells and fibroblasts for improving angiogenesis in tissue engineering. Cells Tissues Organs, 2005, 181(2):80-88.
[24]
18. Matsumoto T, Kuroda R, Mifune Y, et al. Circulating endothelial/skeletal progenitor cells for bone regeneration and healing. Bone, 2008, 43(3):434-439.
[25]
19. Seong JM, Kim BC, Park JH, et al. Stem cells in bone tissue engineering. Biomed Mater, 2010, 5(60):062001.
[26]
23. Seebach C, Henrich D, Wilhelm K, et al. Endothelial progenitor cells improve directly and indirectly early vascularization of mesenchymal stem cell-driven bone regeneration in a critical bone defect in rats. Cell Transplant, 2012, 21(8):1667-1677.
[27]
24. Seebach C, Henrich D, Kahling C, et al. Endothelial progenitor cells and mesenchymal stem cells seeded onto beta-TCP granules enhance early vascularization and bone healing in a critical-sized bone defect in rats. Tissue Eng Part A, 2010, 16(6):1961-1970.
[28]
26. Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 2013, 499(7459):481-484.
[29]
35. Saran U, Piperni SG, Chatterjee S. Role of angiogenesis in bone repair. Arch Biochem Biophys, 2014, 11(561):109-117.
[30]
37. Alfaidy N, Hoffmann P, Boufettal H, et al. The Multiple Roles of EG-VEGF/PROK1 in Normal and Pathological Placental Angiogenesis. Biomed Res Int, 2014, 5(5):451906.
[31]
39. Ferretti C, Vozzi G, Falconi M, et al. Role of IGF1 and IGF1/VEGF on human mesenchymal stromal cells in bone healing:two sources and two fates. Tissue Eng Part A, 2014, 20(17-18):2473-2482.
[32]
44. Hou H, Zhang X, Tang T, et al. Enhancement of bone formation by genetically engineered bone marrow stromal cells expressing BMP-2, VEGF and angiopoietin-1. Biotechnol Lett, 2009, 31(8):1183-1189.
[33]
45. Nakasa T, Ishida O, Sunagawa T, et al. Feasibility of prefabricated vascularized bone graft using the combination of FGF-2 and vascular bundle implantation within hydroxyapatite for osteointegration. J Biomed Mater Res A, 2008, 85(4):1090-1095.
[34]
46. Gavalas NG, Liontos M, Trachana SP, et al. Angiogenesis-related pathways in the pathogenesis of ovarian cancer. Int J Mol Sci, 2013, 14(8):15885-15909.
[35]
47. Munoz-Chapuli R. Evolution of angiogenesis. Int J Dev Biol, 2011, 55(4-5):345-351.
[36]
49. Okada M, Yano K, Namikawa T, et al. Bone morphogenetic protein-2 retained in synthetic polymer/beta-tricalcium phosphate composite promotes hypertrophy of a vascularized long bone graft in rabbits. Plast Reconstr Surg, 2011, 127(1):98-106.
[37]
50. Yang P, Huang X, Shen J, et al. Development of a new pre-vascularized tissue-engineered construct using pre-differentiated rADSCs, arteriovenous vascular bundle and porous nano-hydroxyapatide-polyamide 66 scaffold. BMC Musculoskelet Disord, 2013, 14(14):318.
[38]
54. Kim J, Kim HN, Lim KT, et al. Synergistic effects of nanotopography and co-culture with endothelial cells on osteogenesis of mesenchymal stem cells. Biomaterials, 2013, 34(30):7257-7268.
[39]
60. Viateau V, Bensidhoum M, Pélissier P, et al. Use of the induced membrane technique for bone tissue engineering purposes:animal studies. Orthop Clin North Am, 2010, 41(1):49-56.
[40]
3. Kanczler JM, Oreffo RO. Osteogenesis and angiogenesis:the potential for engineering bone. Eur Cell Mater, 2008, 15:100-114.
[41]
5. Nguyen LH, Annabi N, Nikkhah M, et al. Vascularized bone tissue engineering:approaches for potential improvement. Tissue Eng Part B Rev, 2012, 18(5):363-382.
[42]
21. Li Q, Wang Z. Influence of mesenchymal stem cells with endothelial progenitor cells in co-culture on osteogenesis and angiogenesis:an in vitro study. Arch Med Res, 2013, 44(7):504-513.
[43]
22. Keramaris NC, Kaptanis S, Moss HL, et al. Endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) in bone healing. Curr Stem Cell Res Ther, 2012, 7(4):293-301.
[44]
25. Takebe T, Zhang RR, Koike H, et al. Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat Protoc, 2014, 9(2):396-409.
[45]
28. Ho R, Papp B, Hoffman JA, et al. Stage-specific regulation of reprogramming to induced pluripotent stem cells by Wnt signaling and T cell factor proteins. Cell Rep, 2013, 3(6):2113-2126.
[46]
31. Kane NM, Xiao Q, Baker AH, et al. Pluripotent stem cell differentiation into vascular cells:a novel technology with promises for vascular re(generation). Pharmacol Ther, 2011, 129(1):29-49.
33. Herzog DP, Dohle E, Bischoff I, et al. Cell communication in a coculture system consisting of outgrowth endothelial cells and primary osteoblasts. Biomed Res Int, 2014, 4(4):320123.
[49]
36. Bry M, Kivela R, Leppanen VM, et al. Vascular Endothelial Growth Factor-B in Physiology and Disease. Physiol Rev, 2014, 94(2):779-794.
[50]
34. Jabbarzadeh E, Starnes T, Khan YM, et al. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair:a combined gene therapy-cell transplantation approach. Proc Natl Acad Sci USA, 2008, 105(32):11099-11104.
[51]
38. Ko? A, Finkenzeller G, El?in AE, et al. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts:In vitro and in vivo studies. J Biomater Appl, 2014, 29(5):748-760.
[52]
40. Zhou Y, Guan X, Yu M, et al. Angiogenic/osteogenic response of BMMSCs on bone derived scaffold:effect of hypoxia and role of PI3K/Akt mediated VEGF/VEGFR pathway. Biotechnol J, 2014, 9(7):944-953.
[53]
41. Herzog DP, Dohle E, Bischoff I, et al. Cell communication in a coculture system consisting of outgrowth endothelial cells and primary osteoblasts. Biomed Res Int, 2014, 4(4):320123.
[54]
42. Fagiani E, Christofori G. Angiopoietins in angiogenesis. Cancer Lett, 2013, 328(1):18-26.
[55]
43. Hall K, Ran S. Regulation of tumor angiogenesis by the local environment. Front Biosci, 2010, 15(15):195-212.
[56]
48. Gothard D, Smith EL, Kanczler JM, et al. Tissue engineered bone using select growth factors:A comprehensive review of animal studies and clinical translation studies in man. Eur Cell Mater, 2014, 10(28):166-208.
[57]
51. Cui Q, Dighe AS, Irvine JN. Combined angiogenic and osteogenic factor delivery for bone regenerative engineering. Curr Pharm Des, 2013, 19(19):3374-3383.
[58]
52. Guerrero J, Catros S, Derkaoui SM, et al. Cell interactions between human progenitor-derived endothelial cells and human mesenchymal stem cells in a three-dimensional macroporous polysaccharide-based scaffold promote osteogenesis. Acta Biomater, 2013, 9(9):8200-8213.
[59]
53. Liu Y, Teoh SH, Chong MS, et al. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering. Tissue Eng Part A, 2013, 19(7-8):893-904.
[60]
55. Zheng L, Yang J, Fan H, et al. Material-induced chondrogenic differentiation of mesenchymal stem cells is material-dependent. Exp Ther Med, 2014, 7(5):1147-1150.