目的 探讨动力髋螺钉取出后,在股骨残留钉道内植入多孔羟基磷灰石(hydroxyapatite,HA)陶瓷钉棒对于改善股骨力学性质的有效性研究。 方法 选取 1 名健康成年男性志愿者并行股骨 CT 扫描,利用 CT 数据建立正常股骨三维有限元模型,并在此基础上分别建立未填充钉棒股骨模型、填充多孔 HA 陶瓷钉棒股骨模型。根据填充多孔 HA 陶瓷的表观弹性模量和孔隙率的不同,将填充孔隙率为 80%、表观弹性模量为 0.1 GPa 的多孔 HA 陶瓷设为 A 组;填充孔隙率为 50%、表观弹性模量为 1.0 GPa 的多孔HA陶瓷设为 B 组;填充孔隙率为30%、表观弹性模量为 1.5 GPa 的多孔 HA 陶瓷设为 C 组。将成人步态周期中关节承载处于峰值时刻作为边界条件,记录 Von Mises 应力分布及应力峰值。 结果 正常股骨模型最大应力出现在股骨近端关节承重处,股骨干应力分布均匀,未出现应力集中现象。未填充钉棒股骨模型最大应力出现在远端钉道周围的骨皮质处,出现了明显的应力集中现象。B 组多孔 HA 陶瓷植入的股骨模型其应力分布与正常股骨模型应力分布最为接近,最大应力出现在关节承重处;A、C 组多孔HA陶瓷模型中均出现了不同程度的应力集中现象。 结论 在取出动力髋螺钉的股骨缺损处填充多孔 HA 陶瓷钉棒能明显改善股骨力学性质,其中孔隙率 50%、表观弹性模量 1.0 GPa 的多孔HA陶瓷钉棒最适合作为股骨的填充钉
References
[1]
16. Dorozhkin SV. Multiphasic calcium orthophosphate (CaPO4) bioceramics and their biomedical applications. Ceramics International, 2016, 42(6): 6529-6554.
[2]
1. ?Yeganeh A, Taghavi R, Moghtadaei M. Comparing the Intramedullary Nailing Method Versus Dynamic Hip Screw in Treatment of Unstable Intertrochanteric Fractures. Med Arch, 2016, 70(1): 53-56.
[3]
2. Torres AL, Gaspar VM, Serra IR, et al. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration. Mater Sci Eng C Mater Biol Appl, 2013, 33(7): 4460-4469.
[4]
3. Seol YJ, Park DY, Park JY, et al. A new method of fabricating robust freeform 3D ceramic scaffolds for bone tissue regeneration. Biotechnol Bioeng, 2013, 110(5): 1444-1455.
[5]
9. Azagra R, López-Expósito F, Martin-Sánchez JC, et al. Incidence of hip fracture in Spain (1997-2010). Med Clin (Barc), 2015, 145(11): 465-470.
[6]
11. Page PR, Lord R, Jawad A, et al. Changing trends in the management of intertrochanteric hip fractures-A single centre experience. Injury, 2016, 47(7): 1525-1529.
[7]
14. Wang J, Ma JX, Jia HB. Biomechanical Evaluation of Four Methods for Internal Fixation of Comminuted Subtrochanteric Fractures. Medicine (Baltimore), 2016, 95(19): e3382.
[8]
4. Giffin JM, Pankaj P, Simpson AH. A computational study on the effect of fracture intrusion distance in three- and four-part trochanteric fractures treated with Gamma nail and sliding hip screw. J Orthop Res, 2014, 32(1): 39-45.
[9]
5. Zhang R. Prediction of proximal femoral fracture in sideways falls using nonlinear dynamic finite element analysis. Journal of Mechanics in Medicine and Biology, 2014, 14(2): 407-415.
[10]
6. Lee PY, Lin KJ, Wei HW, et al. Biomechanical effect of different femoral neck blade position on the fixation of intertrochanteric fracture: a finite element analysis. Biomed Tech (Berl), 2016, 61(3): 331-336.
8. Taylor ME, Tanner KE, Freeman MA, et al. Stress and strain distrbution within the intact femur: compress or bending? Med Eng Phys, 1996, 18(2): 122-131.
[13]
10. Leal J, Gray AM, Prieto-Alhambra D, et al. Impact of hip fracture on hospital care costs: a population-based study. Osteoporos Int, 2016, 27(2): 549-558.
[14]
12. Saletti-Cuesta L, Tutton L, Wright J. The relevance of gender in the care of hip fracture patients. Int J Orthop Trauma Nurs, 2016, 22: 3-12.
[15]
13. Stronach BM, Duke JN, Rozensweig SD, et al. Subtrochanteric femur fracture after core decompression and placement of a tantalum strut for osteonecrosis of the femoral head. J Arthroplasty, 2010, 25(7): 1168.e5-e7.
[16]
15. Descampsa M, Boilet L, Moreaua G, et al. Processing and properties of biphasic calcium phosphates bioceramics obtained by pressureless sintering and hot isostatic pressing. Journal of the European Ceramic Society, 2013, 33(7): 1263-1270.
[17]
17. Nagineni VV, James AR, Alimi M, et al. Silicate-substituted calcium phosphate ceramic bone graft replacement for spinal fusion procedures. Spine (Phila Pa 1976), 2012, 37(20): 1264-1272.
19. Gryshkov O, Klyui NI, Temchenko VP, et al. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants. Mater Sci Eng C Mater Biol Appl, 2016, 68: 143-152.
[20]
20. Dorozhkin SV. Calcium orthophosphate deposits: preparation, properties and biomedical applications. Mater Sci Eng C Mater Biol Appl, 2015, 55: 272-326.
22. Rho JY, Tsui TY, Pharr GM. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials, 1997, 18(20): 1325-1330.