目的 对数字化技术在耳廓再造中的应用进展作一综述。 方法 广泛查阅近年来数字化技术在耳廓再造中应用的相关文献,对所涉及的主要技术和具体应用领域进行总结。 结果 以三维数据采集、三维重建和 3D 打印为代表的数字化技术在耳廓再造中的应用,成为近年来耳廓再造领域一个重要的发展方向。通过构建数字化耳廓模型、制作耳廓定位导板和对肋软骨进行成像,对耳廓再造起到了精确指导作用。 结论 数字化技术应用于耳廓再造,能够起到提高再造效果和降低手术创伤的作用。耳软骨的 3D 生物打印具有广阔应用前景,有待继续研究
References
[1]
2. Storch K, Staudenmaier R, Buchberger M, et al. Total Reconstruction of the auricle: our experiences on indications and recent techniques. Biomed Res Int, 2014, 2014: 373286.
[2]
3. Giot JP, Labbé D, Soubeyrand E, et al. Prosthetic reconstruction of the auricle: indications, techniques, and results. Semin Plast Surg, 2011, 25(4): 265-272.
[3]
4. Walsh WE, Reisberg DJ, Danahey DG. A new device for creating and positioning an autogenous cartilage framework during microtia reconstruction. Laryngoscope, 2005, 115(11): 2068-2071.
16. Mota C, Puppi D, Chiellini F, et al. Additive manufacturing techniques for the production of tissue engineering constructs. J Tissue Eng Regen Med, 2015, 9(3): 174-190.
18. 王成龙, 吕长胜. 3D 打印技术在整形外科领域的应用进展. 中国美容整形外科杂志, 2015, 26(5): 275-278.
[17]
19. Kamali P, Dean D, Skoracki R, et al. The Current Role of Three-Dimensional Printing in Plastic Surgery. Plast Reconstr Surg, 2016, 137(3): 1045-1055.
[18]
20. Guillemot F, Mironov V, Nakamura M. Bioprinting is coming of age: Report from the International Conference on Bioprinting and Biofabrication in Bordeaux (3B'09). Biofabrication, 2010, 2(1): 010201.
[19]
21. Seol YJ, Kang HW, Lee SJ, et al. Bioprinting technology and its applications. Eur J Cardiothoracic Surg, 2014, 46(3): 342-348.
[20]
22. Ozbolat IT. Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol, 2015, 33(7): 395-400.
25. Park GC, Wiseman JB, Clark WD. Correction of congenital microtia using stereolithography for surgical planning. Plast Reconstr Surg, 2000, 105(4): 1444-1447.
[23]
26. Staudenmaier R, Naumann A, Aigner J, et al. Ear reconstruction supported by a stereolithographic model. Plast Reconstr Surg, 2000, 106(2): 511-512.
[24]
38. Bai S, Bi Y, Dong Y, et al. Computer-aided design/computer-aided manufacturing implant guide used in flapless surgery for auricular prosthesis. J Oral Maxillofac Surg, 2012, 70(6): 1338-1341.
[25]
41. Tanzer RC. Total reconstruction of the auricle. The evolution of a plan of treatment. Plast Reconstr Surg, 1971, 47(6): 523-533.
30. Hatamleh MM, Watson J. Construction of an implant-retained auricular prosthesis with the aid of contemporary digital technologies: a clinical report. J Prosthodont, 2013, 22(2): 132-136.
32. Turgut G, Sacak B, Kiran K, et al. Use of rapid prototyping in prosthetic auricular restoration. J Craniofac Surg, 2009, 20(2): 321-325.
[34]
33. Liacouras P, Garnes J, Roman N, et al. Designing and manufacturing an auricular prosthesis using computed tomography, 3-dimensional photographic imaging, and additive manufacturing: a clinical report. J Prosthet Dent, 2011, 105(2): 78-82.
35. Wang B, Dong Y, Zhao Y, et al. Computed tomography measurement of the auricle in Han population of north China. J Plast Reconstr Aesthet Surg, 2011, 64(1): 34-40.
37. Kolodney H Jr, Swedenburg G, Taylor SS, et al. The use of cephalometric landmarks with 3-dimensional volumetric computer modeling to position an auricular implant surgical template: a clinical report. J Prosthet Dent, 2011, 106(5): 284-289.
[39]
39. Osorno G. A 20-Year Experience with the Brent Technique of Auricular Reconstruction: Pearls and Pitfalls. Plast Reconstr Surg, 2007, 119(5): 1447-1463.
[40]
40. Lee TS, Lim SY, Pyon JK, et al. Secondary revisions due to unfavourable results after microtia reconstruction. J Plast Reconstr Aesthet Surg, 2010, 63(6): 940-946.
[41]
42. Ontell FK, Moore EH, Shepard JA, et al. The costal cartilages in health and disease. Radiographics, 1997, 17(3): 571-577.
[42]
43. Moon IY, Oh KS, Lim SY, et al. Estimation of eighth costal cartilage in surgical timing of microtia reconstruction. J Craniofac Surg, 2015, 26(1): 48-51.
[43]
44. Andreoli SM, Mills JC, Kilpatric LA, et al. CT measured normative cartilage growth in children requiring costochondral grafting. Otolaryngol Head Neck Surg, 2013, 149(6): 924-930.
46. Kim H, Hwang JH, Lim SY, et al. Preoperative Rib Cartilage Imaging in 3-Dimensional Chest Computed Tomography for Auricular Reconstruction for Microtia. Ann Plast Surg, 2014, 72(4): 428-434.
[46]
49. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol, 2014, 32(8): 773-785.
[47]
50. Reiffel AJ, Kafka C, Hernandez KA, et al. High-fidelity tissue engineering of patient-specific auricles for reconstruction of pediatric microtia and other auricular deformities. PLoS One, 2013, 8(2): e56506.
[48]
52. Mannoor MS, Jiang Z, James T, et al. 3D printed bionic ears. Nano Lett, 2013, 13(6): 2634-2639.
[49]
53. Lee JS, Hong JM, Jung JW, et al. 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication, 2014, 6(2): 024103.
[50]
54. Kang HW, Lee SJ, Ko IK, et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol, 2016, 34(3): 312-319.
[51]
24. Zhou J, Pan B, Yang Q, et al. Three-dimensional autologous cartilage framework fabrication assisted by new additive manufactured ear-shaped templates for microtia reconstruction. J Plastic Reconstr Aesthet Surg, 2016, 69(10): 1436-1444.
[52]
29. Zhu P, Chen S. Clinical outcomes following ear reconstruction with adjuvant 3D template model. Acta otolaryngol, 2016, 136(12): 1236-1241.