全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

数字化技术在耳廓再造中的应用进展

DOI: doi:10.7507/1002-1892.201701023

Keywords: 数字化技术, 耳廓再造, 三维重建, 3D 打印

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的 对数字化技术在耳廓再造中的应用进展作一综述。 方法 广泛查阅近年来数字化技术在耳廓再造中应用的相关文献,对所涉及的主要技术和具体应用领域进行总结。 结果 以三维数据采集、三维重建和 3D 打印为代表的数字化技术在耳廓再造中的应用,成为近年来耳廓再造领域一个重要的发展方向。通过构建数字化耳廓模型、制作耳廓定位导板和对肋软骨进行成像,对耳廓再造起到了精确指导作用。 结论 数字化技术应用于耳廓再造,能够起到提高再造效果和降低手术创伤的作用。耳软骨的 3D 生物打印具有广阔应用前景,有待继续研究

References

[1]  2. Storch K, Staudenmaier R, Buchberger M, et al. Total Reconstruction of the auricle: our experiences on indications and recent techniques. Biomed Res Int, 2014, 2014: 373286.
[2]  3. Giot JP, Labbé D, Soubeyrand E, et al. Prosthetic reconstruction of the auricle: indications, techniques, and results. Semin Plast Surg, 2011, 25(4): 265-272.
[3]  4. Walsh WE, Reisberg DJ, Danahey DG. A new device for creating and positioning an autogenous cartilage framework during microtia reconstruction. Laryngoscope, 2005, 115(11): 2068-2071.
[4]  6. 新疆医学工程学会. 新疆医学工程学会第二届学术年会论文汇编. 乌鲁木齐: [出版者不详], 1998.
[5]  7. 杨军, 肖海燕, 何贤国, 等. 磁共振成像仪原理及故障排除探讨. 中国医学装备, 2011, 8(11): 41-47.
[6]  8. 朱梓瑜, 熊猛. 人体三维扫描技术在整形美容外科中的应用. 东南大学学报(医学版), 2016, 35(3): 453-456.
[7]  9. 柳澄. 充分发挥 64 层螺旋 CT 的优势. 中国医学影像技术, 2005, 21(8): 1145-1147.
[8]  10. 胡立伟, 白凯, 钟玉敏, 等. 磁共振成像技术在 3D 打印先天性心脏病建模中的应用. 中国医学计算机成像杂志, 2016, 22(4): 356-360.
[9]  11. 顾晓宇. 数字化口腔颌面缺损赝复技术. 中国实用口腔科杂志, 2012, 5(5): 272-276.
[10]  12. 邱伟, 杨柠泽, 王志军. 三维可视化技术在整形外科的应用进展. 中华整形外科杂志, 2013, 29(3): 235-237.
[11]  13. 孙荣昊, 李超, 樊晋川, 等. 三维重建与快速成型技术相结合在头颈肿瘤外科的潜在应用价值. 中华耳鼻咽喉头颈外科杂志, 2015, 50(5): 429-431.
[12]  14. 王猛, 孔繁之. 医学图像三维可视化技术及其新进展. 医学影像学杂志, 2015, 25(6): 1095-1097.
[13]  15. 付淼, 李莉, 何叶松, 等. Mimics与医学图像三维重建. 中国现代医学杂志, 2010, 20(19): 3030-3031, 3035.
[14]  16. Mota C, Puppi D, Chiellini F, et al. Additive manufacturing techniques for the production of tissue engineering constructs. J Tissue Eng Regen Med, 2015, 9(3): 174-190.
[15]  17. 周伟民, 闵国全, 李小丽. 3D 打印医学. 组织工程与重建外科杂志, 2014, 10(1): 1-3, 7.
[16]  18. 王成龙, 吕长胜. 3D 打印技术在整形外科领域的应用进展. 中国美容整形外科杂志, 2015, 26(5): 275-278.
[17]  19. Kamali P, Dean D, Skoracki R, et al. The Current Role of Three-Dimensional Printing in Plastic Surgery. Plast Reconstr Surg, 2016, 137(3): 1045-1055.
[18]  20. Guillemot F, Mironov V, Nakamura M. Bioprinting is coming of age: Report from the International Conference on Bioprinting and Biofabrication in Bordeaux (3B'09). Biofabrication, 2010, 2(1): 010201.
[19]  21. Seol YJ, Kang HW, Lee SJ, et al. Bioprinting technology and its applications. Eur J Cardiothoracic Surg, 2014, 46(3): 342-348.
[20]  22. Ozbolat IT. Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol, 2015, 33(7): 395-400.
[21]  23. Tanzer RC. Microtia——a long-term follow-up of 44 reconstructed auricles. Plast Reconstr Surg, 1978, 61(2): 161-166.
[22]  25. Park GC, Wiseman JB, Clark WD. Correction of congenital microtia using stereolithography for surgical planning. Plast Reconstr Surg, 2000, 105(4): 1444-1447.
[23]  26. Staudenmaier R, Naumann A, Aigner J, et al. Ear reconstruction supported by a stereolithographic model. Plast Reconstr Surg, 2000, 106(2): 511-512.
[24]  38. Bai S, Bi Y, Dong Y, et al. Computer-aided design/computer-aided manufacturing implant guide used in flapless surgery for auricular prosthesis. J Oral Maxillofac Surg, 2012, 70(6): 1338-1341.
[25]  41. Tanzer RC. Total reconstruction of the auricle. The evolution of a plan of treatment. Plast Reconstr Surg, 1971, 47(6): 523-533.
[26]  47. 李崇照, 周栩, 章庆国, 等. 肋软骨三维 CT 重建技术在成人耳廓再造中的应用. 组织工程与重建外科杂志, 2015, 11(3): 166-168, 181.
[27]  48. Miyamato J, Miyamoto S, Nagasao T, et al. Preoperative modeling of costal cartilage for the auricular reconstruction of microtia. Plast Reconstr Surg, 2011, 128(1): 23e-24e.
[28]  51. 栾杰, 史庭春, 张仁吉, 等. 个性化人工耳支架置入体的数字化制备与实验研究. 中华整形外科杂志, 2008, 24(2): 101-104.
[29]  27. 国冬军, 潘博, 郭万厚, 等. 先天性小耳畸形数字化三维耳廓模型的构建. 中华整形外科杂志, 2007, 23(4): 344.
[30]  28. 张海林, 王晓军, 贾懿, 等. 应用逆向工程技术构建三维耳郭模型. 中国美容医学, 2007, 16(5): 649-652.
[31]  30. Hatamleh MM, Watson J. Construction of an implant-retained auricular prosthesis with the aid of contemporary digital technologies: a clinical report. J Prosthodont, 2013, 22(2): 132-136.
[32]  31. 焦婷, 张富强, 韩强, 等. 应用螺旋 CT 与快速成型技术制作义耳. 口腔颌面修复学杂志, 2004, 5(2): 127-129.
[33]  32. Turgut G, Sacak B, Kiran K, et al. Use of rapid prototyping in prosthetic auricular restoration. J Craniofac Surg, 2009, 20(2): 321-325.
[34]  33. Liacouras P, Garnes J, Roman N, et al. Designing and manufacturing an auricular prosthesis using computed tomography, 3-dimensional photographic imaging, and additive manufacturing: a clinical report. J Prosthet Dent, 2011, 105(2): 78-82.
[35]  34. 燕静杰, 杨庆华, 宋宇鹏, 等. 三维激光扫描技术应用于再造耳廓远期变化的研究. 中华耳科学杂志, 2013, 11(4): 524-528.
[36]  35. Wang B, Dong Y, Zhao Y, et al. Computed tomography measurement of the auricle in Han population of north China. J Plast Reconstr Aesthet Surg, 2011, 64(1): 34-40.
[37]  36. 陈克光, 傅窈窈, 杨琳, 等. 三维耳郭导板的制作及其在耳郭再造术中的应用. 组织工程与重建外科杂志, 2014, 10(1): 37-39.
[38]  37. Kolodney H Jr, Swedenburg G, Taylor SS, et al. The use of cephalometric landmarks with 3-dimensional volumetric computer modeling to position an auricular implant surgical template: a clinical report. J Prosthet Dent, 2011, 106(5): 284-289.
[39]  39. Osorno G. A 20-Year Experience with the Brent Technique of Auricular Reconstruction: Pearls and Pitfalls. Plast Reconstr Surg, 2007, 119(5): 1447-1463.
[40]  40. Lee TS, Lim SY, Pyon JK, et al. Secondary revisions due to unfavourable results after microtia reconstruction. J Plast Reconstr Aesthet Surg, 2010, 63(6): 940-946.
[41]  42. Ontell FK, Moore EH, Shepard JA, et al. The costal cartilages in health and disease. Radiographics, 1997, 17(3): 571-577.
[42]  43. Moon IY, Oh KS, Lim SY, et al. Estimation of eighth costal cartilage in surgical timing of microtia reconstruction. J Craniofac Surg, 2015, 26(1): 48-51.
[43]  44. Andreoli SM, Mills JC, Kilpatric LA, et al. CT measured normative cartilage growth in children requiring costochondral grafting. Otolaryngol Head Neck Surg, 2013, 149(6): 924-930.
[44]  45. 王永振, 何乐人, 刘雳, 等. 多层螺旋 CT 扫描及三维重建技术在肋软骨组织量评估中的应用研究. 中国修复重建外科杂志, 2014, 28(10): 1266-1269.
[45]  46. Kim H, Hwang JH, Lim SY, et al. Preoperative Rib Cartilage Imaging in 3-Dimensional Chest Computed Tomography for Auricular Reconstruction for Microtia. Ann Plast Surg, 2014, 72(4): 428-434.
[46]  49. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol, 2014, 32(8): 773-785.
[47]  50. Reiffel AJ, Kafka C, Hernandez KA, et al. High-fidelity tissue engineering of patient-specific auricles for reconstruction of pediatric microtia and other auricular deformities. PLoS One, 2013, 8(2): e56506.
[48]  52. Mannoor MS, Jiang Z, James T, et al. 3D printed bionic ears. Nano Lett, 2013, 13(6): 2634-2639.
[49]  53. Lee JS, Hong JM, Jung JW, et al. 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication, 2014, 6(2): 024103.
[50]  54. Kang HW, Lee SJ, Ko IK, et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol, 2016, 34(3): 312-319.
[51]  24. Zhou J, Pan B, Yang Q, et al. Three-dimensional autologous cartilage framework fabrication assisted by new additive manufactured ear-shaped templates for microtia reconstruction. J Plastic Reconstr Aesthet Surg, 2016, 69(10): 1436-1444.
[52]  29. Zhu P, Chen S. Clinical outcomes following ear reconstruction with adjuvant 3D template model. Acta otolaryngol, 2016, 136(12): 1236-1241.
[53]  1. 张如鸿. 全耳再造的历史回眸及未来展望. 中国美容整形外科杂志, 2011, 22(2): 65-67.
[54]  5. Frenzel H. The Rib Cartilage Concept in Microtia. Facial Plastic Surg, 2015, 31(6): 587-599.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133