15. Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng, 2015, 9: 4.
[2]
16. de Azevedo Gon?alves Mota, Couto R, Da Silva, et al. 3D printed scaffolds as a new perspective for bone tissue regeneration: literature review. Mater Sci App, 2016, 7(8): 430-452.
[3]
17. Urist MR. Bone: formation by autoinduction. Science, 1965, 150(3698): 893-899.
19. Fujibayashi S, Neo M, Kim HM, et al. Osteoinduction of porous bioactive titanium metal. Biomaterials, 2004, 25(3): 443-450.
[6]
20. Carlier A, Van Gastel N, Geris L, et al. Bringing regenerating tissues to life: the importance of angiogenesis in tissue engineering. Angiogenesis, 2014, 17(3): 735-735.
[7]
21. Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature, 2014, 507(7492): 323-328.
[8]
31. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials, 2007, 28(32): 4845-4869.
[9]
35. Lorenti A. Wound healing: from epidermis culture to tissue engineering. Cell Bio, 2012, 1(2): 17-29.
[10]
36. Lv Q, Deng M, Ulery BD, et al. Nano-ceramic composite scaffolds for bioreactor-based bone engineering. Clin Orthop Relat Res, 2013, 471(8): 2422-2433.
[11]
37. Jia P, Chen H, Kang H, et al. Deferoxamine released from poly (lactic-co-glycolic acid) promotes healing of osteoporotic bone defect via enhanced angiogenesis and osteogenesis. J Biomed Mater Res A, 2016, 104(10): 2515-2527.
[12]
2. Breeze J, Patel J, Dover M, et al. Success rates and complications of autologous onlay bone grafts and sinus lifts in patients with congenital hypodontia and after trauma. Brit J Oral Mac Surg, 2017, 55(8): 830-833.
[13]
7. Windhager R, Hobusch G, Matzner M. Allogeneic transplants for biological reconstruction of bone defects. Orthopade, 2017, 46(8): 656-664.
[14]
8. Yu X, Tang X, Gohil SV, et al. Biomaterials for bone regenerative engineering. Adv. Healthcare Mater, 2015, 4(9): 1268-1285.
[15]
9. Paiva K, Granjeiro J. Bone tissue remodeling and development: focus on matrix metalloproteinase functions. Arch BiochemBiophys, 2014, 561(2): 74-87.
[16]
11. Berendsen A, Olsen B. Bone development. Bone, 2015, 80: 14-18.
[17]
12. Shapiro F. Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cell Mater, 2008, 15(1): 53-76.
[18]
13. Daculsi G, Fellah BH, Miramond T, et al. Osteoconduction, osteogenicity, osteoinduction, what are the fundamental properties for a smart bone substitutes. Irbm, 2013, 34(4-5): 346-348.
[19]
14. Wu T, Yu S, Chen D, et al. Bionic design, materials and performance of bone tissue scaffolds. Materials, 2017, 10(10): 1187.
[20]
23. Jabbarzadeh E, Starnes T, Khan YM, et al. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy-cell transplantation approach. Proc Natl Acad Sci U S A, 2008, 105(32): 11099-11104.
26. Hench LL. Biomaterials: a forecast for the future. Biomaterials, 1998, 19(16): 1419-1423.
[24]
27. Charnley J. Anchorage of the femoral head prosthesis to the shaft of the femur. J Bone Joint Surg (Br), 1960, 42-B: 28-30.
[25]
28. Gotman I. Characteristics of metals used in implants. J Endourol, 1997, 11(6): 383-389.
[26]
29. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J, 2001, 10(Suppl 2): S96-S101.
[27]
32. Kulkarni RK, Pani KC, Neuman C, et al. Polylactic acid for surgical implants. Arch Surg, 1966, 93(5): 839-843.
[28]
33. Shirtliff VJ, Hench LL. Bioactive materials for tissue engineering, regeneration and repair. J Mater Sci, 2003, 38(23): 4697-4707.
[29]
43. Karsdal MA, Neutzsky-Wulff AV, Dziegiel MH, et al. Osteoclasts secrete non-bone derived signals that induce bone formation. Biochem Bioph Res Co, 2008, 366(2): 483-488.
[30]
45. Segar CE, Ogle ME, Botchwey EA. Regulation of angiogenesis and bone regeneration with natural and synthetic small molecules. Curr Pharm Des, 2013, 19(19): 3403-3419.
[31]
46. Lo KW, Jiang T, Gagnon KA, et al. Small-molecule based musculoskeletal regenerative engineering. Trends Biotechnol, 2014, 32(2): 74-81.
[32]
47. Laurencin CT, Ashe KM, Henry N, et al. Delivery of small molecules for bone regenerative engineering: preclinical studies and potential clinical applications. Drug Discov Today, 2014, 19(6): 794-800.
[33]
48. Emara KM, Diab RA, Emara AK. Recent biological trends in management of fracture non-union. World J Orthop, 2015, 6(8): 623-628.
3. Tosounidis T, Giannoudis P. Biological facet of segmental bone loss reconstruction. J Orthop Trauma, 2017, 31 Suppl 5: S27-S31.
[36]
4. Sen MK, Miclau T. Autologous iliac crest bone graft: Should it still be the gold standard for treating nonunions? Injury, 2007, 38(1): S75-S80.
[37]
5. Sakkas A, Wilde F, Heufelder M, et al. Autogenous bone grafts in oral implantology-is it still a " gold standard”? A consecutive review of 279 patients with 456 clinical procedures. Int J Implant Dent, 2017, 3(1): 3-23.
[38]
6. Sakkas A, Schramm A, Winter K, et al. Risk factors for post-operative complications after procedures for autologous bone augmentation from different donor sites. J Craniomaxillofac Surg, 2018, 46(2): 312-322.
[39]
10. Kohli N, Ho S, Brown S, et al. Bone remodelling in vitro: Where are we headed?:-A review on the current understanding of physiological bone remodelling and inflammation and the strategies for testing biomaterials. Bone, 2018, 110: 38-46.
[40]
22. Mehta G, Mehta K, Sud D, et al. Quantitative measurement and control of oxygen levels in microfluidic poly (dimethylsiloxane) bioreactors during cell culture. Biomed Microdev, 2007, 9(2): 123-134.
[41]
30. Branemark PI. Vital microscopy of bone marrow in rabbit. Scand J Clin Lab Invest, 1959, 11 Supp 38: 1-82.