目的探讨非接触共培养条件下,大鼠SCs对脂肪来源干细胞(adipose-derived stem cells,ADSCs)的诱导分化效应,为神经组织工程寻找理想种子细胞提供参考。 方法取新生1~2 d SD大鼠双侧坐骨神经,酶消化法分离培养SCs,并行S-100免疫荧光染色鉴定。取成年雄性SD大鼠腹股沟和腹膜后脂肪组织,差速贴壁法纯化获得ADSCs并传代,流式细胞仪检测第3代细胞表型CD29、CD34、CD45、CD73、CD90和CD105。取原代SCs和第3代ADSCs按2∶1比例于Transwell共培养系统共培养(实验组),以单纯培养ADSCs作为对照组。倒置相差显微镜下观察细胞形态学改变,培养14 d流式细胞仪检测神经元特异性烯醇化酶(neuron-specific enolase,NSE)表达,免疫荧光染色观察微管相关蛋白2(microtubule-associated protein 2,MAP2)、神经元核蛋白(neuronal nuclei protein,NeuN)和胶质原纤维酸性蛋白(glial fibrillary acidic protein,GFAP)神经元特异性标志物表达情况,并计算阳性细胞率。 结果成功分离培养ADSCs并能连续传代,流式细胞仪检测示其高表达CD29、CD90、CD73和CD105,低表达CD34和CD45。倒置相差显微镜下见,实验组共培养后原本呈梭形的ADSCs以胞核为中心收缩,胞体折光性增强,胞体伸出多个长而粗的突起;对照组ADSCs形态无显著变化。流式细胞仪及免疫荧光染色示,共培养后14d实验组均表达神经元特异性标志物NSE、MAP2、NeuN、GFAP,且阳性细胞率显著高于对照组(P<0.01)。 结论SCs与ADSCs非接触共培养,两者不仅能够共生,且SCs能显著促进ADSCs向神经元样细胞分化
References
[1]
2. Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res, 2000, 61(4):364-370.
[2]
4. Ito R, Morimoto N, Liem PH, et al. Adipogenesis using human adipose tissue-derived stromal cells combined with a collagen/gelatin sponge sustaining release of basic fibroblast growth factor. J Tissue Eng Regen Med, 2014, 8(12):1000-1008.
[3]
5. Fraser JK, Wulur I, Alfonso Z, et al. Fat tissue:an underappreciated source of stem cells for biotechnology. Trends Biotechnol, 2006, 24(4):150-154.
[4]
6. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue:implications for cell-based therapies. Tissue Eng, 2001, 7(2):211-228.
[5]
17. Duan P, Xu H, Zeng Y, et al. Human bone marrow stromal cells can differentiate to a retinal pigment epithelial phenotype when co-cultured with pig retinal pigment epithelium using a transwell system. Cell Physiol Biochem, 2013, 31(4-5):601-613.
19. Ning H, Lin G, Lue TF, et al. Neuron-like differentiation of adipose tissue-derived stromal cells and vascular smooth muscle cells. Differentiation, 2006, 74(9-10):510-518.
[8]
16. Lu P, Blesch A, Tuszynski MH. Induction of bone marrow stromal cells to neurons:differentiation, transdifferentiation, or artifact? J Neurosci Res, 2004, 77(2):174-191.
[9]
20. Mahmood A, Lu D, Chopp M. Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation within the brain. Neurosurgery, 2004, 55(5):1185-1193.
1. Kaengkan P, Baek SE, Kim JY, et al. Administration of mesenchymal stem cells and ziprasidone enhanced amelioration of ischemic brain damage in rats. Mol Cells, 2013, 36(6):534-541.
[12]
3. Zurita M, Vaquero J, Oya S, et al. Schwann cells induce neuronal differentiation of bone marrow stromal cells. Neuroreport, 2005, 16(5):505-508.
[13]
7. Hiwatashi N, Hirano S, Mizuta M, et al. Adipose-derived stem cells versus bone marrow-derived stem cells for vocal fold regeneration. Laryngoscope, 2014, 124(12):E461-E469.
[14]
8. Tomita K, Madura T, Sakai Y, et al. Glial differentiation of human adipose-derived stem cells:implications for cell-based transplantation therapy. Neuroscience, 2013, 236:55-65.
[15]
9. Armati PJ, Mathey EK. Clinical implications of Schwann cell biology. J Peripher Nerv Syst, 2014, 19(1):14-23.
[16]
10. Xiaojie L, Dapeng L, Ping G, et al. Neural differentiation of adiposederived stem cells by indirect co-culture with Schwann cells. Arch Biol Sci, 2009, 61(4):703-711.
[17]
11. Kingham PJ, Kalbermatten DF, Mahay D, et al. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol, 2007, 207(2):267-274.
[18]
12. Ni WF, Wu AM, Li QL, et al. Induced human bone marrow stromal cells differentiate into neural cells by bFGF and cocultured with olfactory ensheathing cells. Curr Stem Cell Res Ther, 2014, 9(4):291-296.
[19]
13. Jang S, Cho HH, Cho YB, et al. Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biol, 2010, 11:25.
[20]
14. Qian DX, Zhang HT, Ma X, et al. Comparison of the efficiencies of three neural induction protocols in human adipose stromal cells. Neurochem Res, 2010, 35(4):572-579.
[21]
15. Wrage PC, Tran T, To K, et al. The neuro-glial properties of adiposederived adult stromal (ADAS) cells are not regulated by Notch 1 and are not derived from neural crest lineage. PLoS One, 2008, 3(1):e1453.