全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

炎性反应及免疫反应与病理性瘢痕研究进展

DOI: doi:10.7507/1002-1892.20150137

Keywords: 病理性瘢痕, 形成机制, 炎性反应, 免疫反应

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的对病理性瘢痕形成过程中涉及的炎性反应及免疫反应的相关研究作一综述。 方法广泛查阅近年来病理性瘢痕形成机制相关文献,对在其形成过程中所参与的炎性反应与免疫反应进行综述。 结果病理性瘢痕的形成与炎性反应及免疫反应有关,一些炎性因子会促进免疫细胞活化,诱导免疫细胞释放细胞因子,加重炎性反应,而炎性反应也会影响免疫反应程度,两者可通过炎性免疫细胞及介质共同作用促进病理性瘢痕的形成。 结论病理性瘢痕的形成不仅与炎性反应有关,还涉及免疫反应,而免疫反应是近年来病理性瘢痕机制研究中的新进展,进一步深入研究炎性免疫反应将为病理性瘢痕的防治策略提供新的思路与相应依据

References

[1]  25. Chen L, Schrementi ME, Ranzer MJ, et al. Blockade of mast cell activation reduces cutaneous scar formation. PLoS One, 2014, 9(1):e85226.
[2]  29. Roddy GW, Oh JY, Lee RH, et al. Action at a distance:systemically administered adult stem/progenitor cells (MSCs) reduce inflammatory damage to the cornea without engraftment and primarily by secretion of TNF-α stimulated gene/protein 6. Stem Cells, 2011, 29(10):1572-1579.
[3]  30. Mora-Lee S, Sirerol-Piquer MS, Gutierrez-Perez M, et al. Therapeutic effects of hMAPC and hMSC transplantation after stroke in mice. PLoS One, 2012, 7(8):e43683.
[4]  31. Liang Q, Liu S, Han P, et al. Micronized acellular dermal matrix as an efficient expansion substrate and delivery vehicle of adipose-derived stem cells for vocal fold regeneration. Laryngoscope, 2012, 122(8):1815-1825.
[5]  32. Jackson WM, Nesti LJ, Tuan RS. Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem Cell Res Ther, 2012, 3(3):20.
[6]  34. Liu S, Jiang L, Li H, et al. Mesenchymal stem cells prevent hypertrophic scar formation via inflammatory regulation when undergoing apoptosis. J Invest Dermatol, 2014, 134(10):2648-2657.
[7]  35. Qi Y, Jiang D, Sindrilaru A, et al. TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds. J Invest Dermatol, 2014, 134(2):526-537.
[8]  1. Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration. Nature, 2008, 453(7193):314-321.
[9]  2. Gauglitz GG, Korting HC, Pavicic T, et al. Hypertrophic scarring and keloids:pathomechanisms and current and emerging treatment strategies. Mol Med, 2011, 17(1-2):113-125.
[10]  3. Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration:mechanisms, signaling, and translation. Sci Transl Med, 2014, 6(265):265sr6.
[11]  4. Sun BK, Siprashvili Z, Khavari PA. Advances in skin grafting and treatment of cutaneous wounds. Science, 2014, 346(6212):941-945.
[12]  5. Martin P, Leibovich SJ. Inflammatory cells during wound repair:the good, the bad and the ugly. Trends Cell Biol, 2005, 15(11):599-607.
[13]  6. Martin P, D'Souza D, Martin J, et al. Wound healing in the PU.1 null mouse-tissue repair is not dependent on inflammatory cells. Curr Biol, 2003, 13(13):1122-1128.
[14]  7. Mahdavian Delavary B, van der Veer WM, van Egmond M, et al. Macrophages in skin injury and repair. Immunobiology, 2011, 216(7):753-762.
[15]  8. Huang C, Murphy GF, Akaishi S, et al. Keloids and hypertrophic scars:update and future directions. Plast Reconstr Surg Glob Open, 2013, 1(4):e25.
[16]  21. King A, Balaji S, Le LD, et al. Regenerative wound healing:the role of interleukin-10. Adv Wound Care (New Rochelle), 2014, 3(4):315-323.
[17]  22. Tan KT, McGrrouther DA, Day AJ, et al. Characterization of hyaluronan and TSG-6 in skin scarring:differential distribution in keloid scar, normal scar and unscarred skin. J Eur Acad Dermatol Venereol, 2011, 25(3):317-327.
[18]  23. Wang H, Chen Z, Li XJ, et al. Anti-inflammatory cytokine TSG-6 inhibits hypertrophic scar formation in a rabbit ear model. Eur J Pharmacol, 2015, 751:42-49.
[19]  24. Márquez García A, Ojeda Vila T, Ferrándiz L, et al. Hypertrophic and keloid scars after the application of 5% imiquimod cream:a report of 2 cases. Actas Dermosifiliogr, 2014, 105(8):795-797.
[20]  26. Sandulache VC, Parekh A, Li-Korotky H, et al. Prostaglandin E2 inhibition of keloid fibroblast migration, contraction, and transforming growth factor (TGF)-beta1-induced collagen synthesis. Wound Repair Regen, 2007, 15(1):122-133.
[21]  27. Li F, Huang Q, Chen J, et al. Apoptotic cells activate the "phoenix rising" pathway to promote wound healing and tissue regeneration. Sci Signal, 2010, 3(110):ra13.
[22]  28. Lee RH, Pulin AA, Seo MJ, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell, 2009, 5(1):54-63.
[23]  9. Zgheib C, Xu J, Liechty KW. Targeting inflammatory cytokines and extracellular matrix composition to promote wound regeneration. Adv Wound Care (New Rochelle), 2014, 3(4):344-355.
[24]  10. Caskey RC, Allukian M, Lind RC, et al. Lentiviral-mediated over-expression of hyaluronan synthase-1 (HAS-1) decreases the cellular inflammatory response and results in regenerative wound repair. Cell Tissue Res, 2013, 351(1):117-125.
[25]  11. Lim AF, Weintraub J, Kaplan EN, et al. The embrace device significantly decreases scarring following scar revision surgery in a randomized controlled trial. Plast Reconstr Surg, 2014, 133(2):398-405.
[26]  12. Wong VW, Paterno J, Sorkin M, et al. Mechanical force prolongs acute inflammation via T-cell-dependent pathways during scar formation. FASEB J, 2011, 25(12):4498-4510.
[27]  13. Ud-Din S, Volk SW, Bayat A. Regenerative healing, scar-free healing and scar formation across the species:current concepts and future perspectives. Exp Dermatol, 2014, 23(9):615-619.
[28]  14. van den Broek LJ, Limandjaja GC, Niessen FB, et al. Human hypertrophic and keloid scar models:principles, limitations and future challenges from a tissue engineering perspective. Exp Dermatol, 2014, 23(6):382-386.
[29]  15. Song C. Hypertrophic scars and keloids in surgery:current concepts. Ann Plast Surg, 2014, 73 Suppl 1:S108-S118.
[30]  16. Glim JE, Beelen RH, Niessen FB, et al. The number of immune cells is lower in healthy oral mucosa compared to skin and does not increase after scarring. Arch Oral Biol, 2015, 60(2):272-281.
[31]  17. Brown JJ, Bayat A. Genetic susceptibility to raised dermal scarring. Br J Dermatol, 2009, 161(1):8-18.
[32]  18. Pistorio AL, Ehrlich HP. Modulatory effects of connexin-43 expression on gap junction intercellular communications with mast cells and fibroblasts. J Cell Biochem, 2011, 112(5):1441-1449.
[33]  19. Foley TT, Saggers GC, Moyer KE, et al. Rat mast cells enhance fibroblast proliferation and fibroblast-populated collagen lattice contraction through gap junctional intercellular communications. Plast Reconstr Surg, 2011, 127(4):1478-1486.
[34]  20. Kieran I, Knock A, Bush J, et al. Interleukin-10 reduces scar formation in both animal and human cutaneous wounds:results of two preclinical and phase Ⅱ randomized control studies. Wound Repair Regen, 2013, 21(3):428-436.
[35]  33. Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol, 2012, 12(5):383-396.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133