全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

鹿茸软骨组织脱细胞基质材料的制备及生物相容性研究

DOI: doi:10.7507/1002-1892.201612072

Keywords: 鹿茸, 脱细胞基质, 软骨组织工程

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的探讨鹿茸软骨制备脱细胞基质材料的可行性以及生物相容性,为软骨修复重建探索新材料。 方法取梅花鹿鹿茸生长中心间充质层,进行由 DNA 酶、RNA 酶、抑肽酶等介导的脱细胞处理;行组织学和 DNA 含量检测,评价脱细胞效果。取第 2 代鹿生茸区骨膜(antlerogenic periosteum,AP)细胞,行荧光干细胞标记明确其干细胞特性后,用 PKH26 荧光标记并与制备的间充质层脱细胞基质进行复合培养;7 d 后取材行HE染色观察以及荧光显微镜下观察 PKH26 标记的 AP 细胞在基质表面生长情况。以上观测均以未复合 AP 细胞的脱细胞基质作为对照。将复合培养 7 d 的样本移植至裸鼠一侧腹股沟(实验组),取空白培养样本移植于另一侧(对照组)。于移植后 7、21 d 取材行 HE 染色,同时对组织进行冰冻切片并在荧光显微镜下观察 PKH26 标记成功的 AP 细胞在脱细胞基质表面及内部的生长情况,评价含 AP 细胞的脱细胞基质在裸鼠体内的组织相容性。 结果HE 和 DAPI 染色显示脱细胞处理后材料中无细胞残留,DNA 含量为(19.367±5.254)ng/mg,较脱细胞处理前的(3 805.500±519.119)ng/mg 显著降低(t=12.630,P=0.000),提示成功制备间充质层脱细胞基质。AP 细胞与间充质层脱细胞基质复合培养 7 d 后,AP 细胞主要黏附于材料表面,部分进入脱细胞基质内部。植入裸鼠体内后,随观察时间延长,接种 AP 细胞可以在脱细胞基质材料中增殖并逐渐进入材料内部,并诱导血管生成。 结论实验成功制备鹿茸软骨脱细胞基质,该基质材料在离体和活体情况下适于种子细胞(AP 细胞)的黏附和增殖,并具有刺激血管生成的功能,为其用于软骨组织修复提供理论依据

References

[1]  2. Minas T, Nehrer S. Current concepts in the treatment of articular cartilage defects. Orthopedics, 1997, 20(6): 525-538.
[2]  3. Hunziker EB. Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable? Osteoarthritis Cartilage, 1999, 7(1): 15-28.
[3]  12. Linsley CS, Wu BM, Tawil B. Mesenchymal stem cell growth on and mechanical properties of fibrin-based biomimetic bone scaffolds. J Biomed Mater Res A, 2016, 104(12): 2945-2953.
[4]  14. Li C, Waldrup KA, Corson ID, et al. Histogenesis of antlerogenic tissues cultivated in diffusion chambers in vivo in red deer (Cervus elaphus). Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 1995, 272(5): 345-355.
[5]  15. 张伟, 褚文辉, 李春义. 鹿茸成骨过程及其相关调控机制研究进展. 中国农学通报, 2015, 31(8): 6-11.
[6]  16. 李光凤, 赵丽红, 郭斌, 等. 梅花鹿鹿茸生长顶端的组织结构. 中国畜牧兽医学会动物解剖学及组织胚胎学分会第十五次学术研讨会论文集. 北京: 中国畜牧兽医学会, 2008.
[7]  18. Li C, Clark DE, Lord EA, et al. Sampling technique to discriminate the different tissue layers of growing antler tips for gene discovery. Anat Rec, 2002, 268(2): 125-130.
[8]  19. Utomo L, Pleumeekers MM, Nimeskern L, et al. Preparation and characterization of a decellularized cartilage scaffold for ear cartilage reconstruction. Biomed Mater, 2015, 10(1): 015010.
[9]  20. Traverse JH. Using biomaterials to improve the efficacy of cell therapy following acute myocardial infarction. J Cardiovasc Transl Res, 2012, 5(1): 67-72.
[10]  22. 员海超, 蒲春晓, 魏强, 等. 组织工程细胞外基质材料研究进展. 中国修复重建外科杂志, 2012, 26(10): 1251-1254.
[11]  23. 祁洁, 杨志明. 骨组织工程细胞外基质的研究进展. 中国修复重建外科杂志, 2006, 20(1): 61-64.
[12]  24. 于龙, 胡蕴玉, 毕龙, 等. 脱细胞软骨基质三维支架的制备及特性研究. 中国矫形外科杂志, 2010,18(9): 743-747.
[13]  27. 周红星, 杨柳, 李起鸿. 骨组织工程研究中种子细胞、支架材料及其相互关系.中国临床康复, 2004, 8(14): 2706-2707.
[14]  28. Nakamura A, Ikarashi Y, Tsuchiya T, et al. Correlations among chemical constituents, cytotoxicities and tissue responses: in the case of natural rubber latex materials. Biomaterials, 1990, 11: 92-94.
[15]  1. Mierisch CM, Wilson HA, Turner MA, et al. Chondrocyte transplantation into articular cartilage defects with use of calcium alginate: the fate of the cells. J Bone Joint Surg (Am), 2003, 85-A(9): 1757-1767.
[16]  4. 李海鹏, 刘玉杰. 关节软骨损伤治疗的最新进展. 中国矫形外科杂志, 2006, 14(14): 1076-1078.
[17]  5. Shao X, Goh JC, Hutmacher DW, et al. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Tissue Eng, 2006, 12(6): 1539-1551.
[18]  6. Dragoo JL, Carlson G, McCormick F, et al. Healing full-thickness cartilage defects using adipose-derived stem cells. Tissue Eng, 2007, 13(7): 1615-1621.
[19]  7. Sutherland AJ, Converse GL, Hopkins RA, et al. The bioactivity of cartilage extracellular matrix in articular cartilage regeneration. Adv Healthc Mater, 2015, 4(1): 29-39.
[20]  8. 孟庆阳, 胡晓青, 黄洪杰, 等. 猪腹膜脱细胞基质联合微骨折技术修复兔膝关节软骨缺损. 中国运动医学杂志, 2016, 35(7): 637-641.
[21]  9. Novak T, Fites Gilliland K, Xu X, et al. In Vivo Cellular Infiltration and Remodeling in a Decellularized Ovine Osteochondral Allograft. Tissue Eng Part A, 2016, 22(21-22): 1274-1285.
[22]  10. Vindas Bola?os RA, Cokelaere SM, McDermott Estrada JM, et al. The use of a cartilage decellularized matrix scaffold for the repair of osteochondral defects: the importance of long-term studies in a large animal model. Osteoarthritis and Cartilage, 2017, 25(3): 413-420.
[23]  11. Amiel GE, Komura M, Shapira OZ, et al. Engineering of blood vessels from acellular collagen matrices coated with human endothelial cells. Tissue Eng, 2006, 12(8): 2355-2365.
[24]  13. Ozkanlar S, Akcay F. Antioxidant vitamins in atherosclerosis——animal experiments and clinical studies. Adv Clin Exp Med, 2012, 21(1): 115-123.
[25]  17. Berg DK, Li C, Asher G, et al. Red deer cloned from antler stem cells and their differentiated progeny. Biol Reprod, 2007, 77(3): 384-394.
[26]  21. Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng, 2011, 13: 27-53.
[27]  25. Gilbert TW. Strategies for tissue and organ decellularization[J]. Journal of cellular biochemistry, 2012, 113(7): 2217-2222.
[28]  26. Pati F, Song TH, Rijal G, et al. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials, 2015, 37: 230-241.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133