目的探讨鹿茸软骨制备脱细胞基质材料的可行性以及生物相容性,为软骨修复重建探索新材料。 方法取梅花鹿鹿茸生长中心间充质层,进行由 DNA 酶、RNA 酶、抑肽酶等介导的脱细胞处理;行组织学和 DNA 含量检测,评价脱细胞效果。取第 2 代鹿生茸区骨膜(antlerogenic periosteum,AP)细胞,行荧光干细胞标记明确其干细胞特性后,用 PKH26 荧光标记并与制备的间充质层脱细胞基质进行复合培养;7 d 后取材行HE染色观察以及荧光显微镜下观察 PKH26 标记的 AP 细胞在基质表面生长情况。以上观测均以未复合 AP 细胞的脱细胞基质作为对照。将复合培养 7 d 的样本移植至裸鼠一侧腹股沟(实验组),取空白培养样本移植于另一侧(对照组)。于移植后 7、21 d 取材行 HE 染色,同时对组织进行冰冻切片并在荧光显微镜下观察 PKH26 标记成功的 AP 细胞在脱细胞基质表面及内部的生长情况,评价含 AP 细胞的脱细胞基质在裸鼠体内的组织相容性。 结果HE 和 DAPI 染色显示脱细胞处理后材料中无细胞残留,DNA 含量为(19.367±5.254)ng/mg,较脱细胞处理前的(3 805.500±519.119)ng/mg 显著降低(t=12.630,P=0.000),提示成功制备间充质层脱细胞基质。AP 细胞与间充质层脱细胞基质复合培养 7 d 后,AP 细胞主要黏附于材料表面,部分进入脱细胞基质内部。植入裸鼠体内后,随观察时间延长,接种 AP 细胞可以在脱细胞基质材料中增殖并逐渐进入材料内部,并诱导血管生成。 结论实验成功制备鹿茸软骨脱细胞基质,该基质材料在离体和活体情况下适于种子细胞(AP 细胞)的黏附和增殖,并具有刺激血管生成的功能,为其用于软骨组织修复提供理论依据
References
[1]
2. Minas T, Nehrer S. Current concepts in the treatment of articular cartilage defects. Orthopedics, 1997, 20(6): 525-538.
[2]
3. Hunziker EB. Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable? Osteoarthritis Cartilage, 1999, 7(1): 15-28.
[3]
12. Linsley CS, Wu BM, Tawil B. Mesenchymal stem cell growth on and mechanical properties of fibrin-based biomimetic bone scaffolds. J Biomed Mater Res A, 2016, 104(12): 2945-2953.
[4]
14. Li C, Waldrup KA, Corson ID, et al. Histogenesis of antlerogenic tissues cultivated in diffusion chambers in vivo in red deer (Cervus elaphus). Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 1995, 272(5): 345-355.
18. Li C, Clark DE, Lord EA, et al. Sampling technique to discriminate the different tissue layers of growing antler tips for gene discovery. Anat Rec, 2002, 268(2): 125-130.
[8]
19. Utomo L, Pleumeekers MM, Nimeskern L, et al. Preparation and characterization of a decellularized cartilage scaffold for ear cartilage reconstruction. Biomed Mater, 2015, 10(1): 015010.
[9]
20. Traverse JH. Using biomaterials to improve the efficacy of cell therapy following acute myocardial infarction. J Cardiovasc Transl Res, 2012, 5(1): 67-72.
28. Nakamura A, Ikarashi Y, Tsuchiya T, et al. Correlations among chemical constituents, cytotoxicities and tissue responses: in the case of natural rubber latex materials. Biomaterials, 1990, 11: 92-94.
[15]
1. Mierisch CM, Wilson HA, Turner MA, et al. Chondrocyte transplantation into articular cartilage defects with use of calcium alginate: the fate of the cells. J Bone Joint Surg (Am), 2003, 85-A(9): 1757-1767.
5. Shao X, Goh JC, Hutmacher DW, et al. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Tissue Eng, 2006, 12(6): 1539-1551.
9. Novak T, Fites Gilliland K, Xu X, et al. In Vivo Cellular Infiltration and Remodeling in a Decellularized Ovine Osteochondral Allograft. Tissue Eng Part A, 2016, 22(21-22): 1274-1285.
[22]
10. Vindas Bola?os RA, Cokelaere SM, McDermott Estrada JM, et al. The use of a cartilage decellularized matrix scaffold for the repair of osteochondral defects: the importance of long-term studies in a large animal model. Osteoarthritis and Cartilage, 2017, 25(3): 413-420.
[23]
11. Amiel GE, Komura M, Shapira OZ, et al. Engineering of blood vessels from acellular collagen matrices coated with human endothelial cells. Tissue Eng, 2006, 12(8): 2355-2365.
[24]
13. Ozkanlar S, Akcay F. Antioxidant vitamins in atherosclerosis——animal experiments and clinical studies. Adv Clin Exp Med, 2012, 21(1): 115-123.
[25]
17. Berg DK, Li C, Asher G, et al. Red deer cloned from antler stem cells and their differentiated progeny. Biol Reprod, 2007, 77(3): 384-394.
[26]
21. Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng, 2011, 13: 27-53.
[27]
25. Gilbert TW. Strategies for tissue and organ decellularization[J]. Journal of cellular biochemistry, 2012, 113(7): 2217-2222.
[28]
26. Pati F, Song TH, Rijal G, et al. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials, 2015, 37: 230-241.