1. Nukavarapu SP,Dorcemus DL.Osteochondral tissue engineering:Current strategies and challenges.Biotechnol,2013,31(5):706-721.
[2]
17. Choi DH,Park CH,Kim IH,et al.Fabrication of core-shell microcapsules using PLGA and alginate for dual growth factor delivery system.J Control Release,2010,147(2):193-201.
[3]
18. Re'em T,Kaminer-Israeli Y,Ruvinov E,et al.Chondrogenesis of hMSC in affinity-bound TGF-beta scaffolds.Biomaterials,2012,33(3):751-761.
[4]
30. Jaklenec A,Hinckfuss A,Bilgen B,et al.Sequential release of bioactive IGF-I and TGF-beta 1 from PLGA microspherebased scaffolds.Biomaterials,2008,29(10):1518-1525.
[5]
5. Murphy MK,Huey DJ,Hu JC,et al.TGF-β1,GDF-5,and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells.Stem Cells,2015,33(3):762-773.
[6]
6. Johnstone B,Alini M,Cucchiarini M,et al.Tissue engineering for articular cartilage repair-the state of the art.Eur Cell Mater,2013,25:248-267.
[7]
12. Emans PJ,van Rhijn LW,Welting TJ,et al.Autologous engineering of cartilage.Proc Natl Acad Sci U S A,2010,107(8):3418-3423.
[8]
13. Matsumoto T,Cooper GM,Gharaibeh B,et al.Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1.Arthritis Rheum,2009,60(5):1390-1405.
[9]
14. Krüger JP,Freymannx U,Vetterlein S,et al.Bioactive factors in platelet-rich plasma obtained by apheresis.Transfus Med Hemother,2013,40(6):432-440.
[10]
15. Sundman EA,Cole BJ,Karas V,et al.The anti-inflammatory and matrix restorative mechanisms of platelet-rich plasma in osteoarthritis.Am J Sports Med,2014,42(1):35-41.
[11]
16. Zhu Y,Yuan M,Meng HY,et al.Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis:a review.Osteoarthritis Cartilage,2013,21(11):1627-1637.
[12]
2. Elmorsy S,Funakoshi T,Sasazawa F,et al.Chondroprotective effects of high-molecular-weight cross-linked hyaluronic acid in a rabbit knee osteoarthritis model.Osteoarthritis Cartilage,2014,22(1):121-127.
[13]
3. Santo VE,Gomes ME,Mano JF,et al.Controlled release strategies for bone,cartilage,and osteochondral engineering-part I:recapitulation of native tissue healing and variables for the design of delivery systems.Tissue Eng B Rev,2013,19(3):308-326.
[14]
4. Jeong CG,Zhang H,Hollister SJ.Three-dimensional polycaprolactone scaffold-conjugated bone morphogenetic protein-2 promotes cartilage regeneration from primary chondrocytes in vitro and in vivo without accelerated endochondral ossification.J Biomed Mater Res A,2012,100(8):2088-2096.
8. Chubinskaya S,Otten L,Soeder S,et al.Regulation of chondrocyte gene expression by osteogenic protein-1.Arthritis Res Ther,2011,13(2):R55.
[17]
9. Dani?ovi? L,Varga I,Polák S.Growth factors and chondrogenic differentiation of mesenchymal stem cells.Tissue Cell,2012,44(2):69-73.
[18]
10. Toh WS,Spector M,Lee EH,et al.Biomaterial-mediated delivery of microenvironmental cues for repair and regeneration of articular cartilage.Mol Pharm,2011,8(4):994-1001.
19. Fan H,Tao H,Wu Y,et al.TGF-β3 immobilized PLGA-gelatin/chondroitin sulfate/hyaluronic acid hybrid scaffold for cartilage regeneration.J Biomed Mater Res,2010,95(4):982-992.
[21]
20. Yang HS,La WG,Bhang SH,et al.Hyaline cartilage regeneration by combined therapy of microfracture and long-term bone morphogenetic protein-2 delivery.Tissue Eng Part A,2011,17(13-14):1809-1818.
[22]
21. Griffin DR,Schlosser JL,Lam SF,et al.Synthesis of photodegradable macromers for conjugation and release of bioactive molecules.Biomacromolecules,2013,14(4):1199-1207.
[23]
22. Li X,Wang J,Su G,et al.Spatiotemporal control over growth factor delivery from collagen-based membrane.J Biomed Mater Res A,2012,100(2):396-405.
[24]
23. Richardson TP,Peters MC,Ennett AB,et al.Polymeric system for dual growth factor delivery.Nat Biotechnol,2001,19(11):1029-1034.
[25]
24. Jiang T,Petersen RR,Call G,et al.Development of chondroitin ulfate encapsulated PLGA microsphere delivery systems with controllable multiple burst releases for treating osteoarthritis.J Biomed Mater Res B Appl Biomater,2011,97(2):355-363.
[26]
25. Westhaus E,Messersmith PB.Triggered release of calcium from lipid vesicles:a bioinspired strategy for rapid gelation of polysaccharide and protein hydrogels.Biomaterials,2001,22(5):453-462.
[27]
26. Santo VE,Gomes ME,Mano JF,et al.From nano-to macro-scale:nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering.Nanomedicine (Lond),2012,7(7):1045-1066.
[28]
28. Bian L,Zhai DY,Tous E,et al.Enhanced MSC chondrogenesis following delivery of GF-beta3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo.Biomaterials,2011,32(27):6425-6434.
[29]
29. Lim SM,Oh SH,Lee HH,et al.Dual growth factor-releasing nanoparticle/hydrogel system for cartilage tissue engineering.J Mater Sci Mater Med,2010,21(9):2593-2600.
[30]
31. Lakshmanan A,Zhang S,Hauser CA.Short self-assembling peptides as building blocks for modern nanodevices.Trends Biotechnol,2012,30(3):155-165.
[31]
32. Kopesky PW,Vanderploeg EJ,Kisiday JD,et al.Controlled delivery of transforming growth factor beta1 by self-assembling peptide hydrogels induces chondrogenesis of bone marrow stromal cells and modulates Smad2/3 signaling.Tissue Eng Part A,2011,17(1-2):83-92.
[32]
27. Dormer NH,Singh M,Zhao L,et al.Osteochondral interface regeneration of the rabbit knee with macroscopic gradients of bioactive signals.J Biomed Mater Res A,2012,100(1):162-170.