全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

人体不同部位正常皮肤成纤维细胞对机械张力反应的研究

DOI: doi:10.7507/1002-1892.20150101

Keywords: 成纤维细胞, 机械张力, 正常皮肤, 增生性瘢痕

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的探讨人体不同部位正常皮肤成纤维细胞对机械张力反应的差异。 方法取色素痣切除患者自愿捐赠的背部和上臂内侧正常皮肤,应用组织块法体外培养成纤维细胞,取第5~8代细胞进行实验。将背部和上臂内侧正常成纤维细胞分别设实验组和对照组,实验组细胞采用多通道细胞应力加载仪加载周期性机械张力24、36、48 h;对照组细胞正常培养。各时间点加载结束后,倒置显微镜下观察细胞形态变化;CCK-8法检测细胞增殖活性;RT-PCR法检测细胞内整合素β1、P130Cas(p130Crk-associated substance)、TGF-β1、Ⅰ型胶原a1链(collagen type Ⅰ α1 chain,COL1A1) mRNA水平;ELISA法检测Ⅰ型胶原和TGF-β1含量。对照组于培养对应时间取细胞进行以上观察。 结果实验组加载后细胞均增殖旺盛,分布密集,排列呈一定方向性。加载24 h后,实验组背部及上臂内侧细胞增殖,整合素β1、P130Cas、TGF-β1 mRNA表达水平和TGF-β1含量比较,差异均无统计学意义(P>0.05);加载36、48 h时,背部细胞以上检测指标均显著高于上臂内侧细胞,差异有统计学意义(P<0.05)。实验组各时间点背部及上臂内侧细胞的COL1A1 mRNA表达水平和Ⅰ型胶原含量比较,差异均无统计学意义(P>0.05)。对照组各时间点背部及上臂内侧细胞以上指标比较,差异均无统计学意义(P>0.05)。 结论背部和上臂内侧皮肤成纤维细胞对机械张力的反应不同,提示人体皮肤成纤维细胞的力学特征存在部位差异,可能导致不同部位增生性瘢痕的发生率不同

References

[1]  6. Ohmori Y, Akaishi S, Ogawa R, et al. The analysisof keloid favorite site. The 4th Japan Scar Workshop, Tokyo, Japan, 2009.
[2]  7. Parsons M, Kessler E, Laurent GJ, et al. Mechanical load enhances procollagen processing in dermal fibroblasts by regulating levels of procollagen C-proteinase. Exp Cell Res, 1999, 252(2):319-331.
[3]  9. 王志国, 匡瑞霞, 陈振雨, 等. 不同幅度牵张力对正常皮肤成纤维细胞向增生性瘢痕成纤维细胞转化的诱导作用. 中华医学杂志, 2015, 95(4):294-298.
[4]  18. Wang Y, McNiven MA. Invasive matrix degradation at focal adhesions occurs via protease recruitment by a FAK-p130Cas complex. J Cell Biol, 2012, 196(3):375-385.
[5]  19. Jano?tiak R, Brábek J, Auernheimer V, et al. CAS directly interacts with vinculin to control mechanosensing and focal adhesion dynamics. Cell Mol Life Sci, 2014, 71(4):727-744.
[6]  20. Hannafin JA, Attia EA, Henshaw R, et al. Effect of cyclic strain and plating matrix on cell proliferation and integrin expression by ligament fibroblasts. J Orthop Res, 2006, 24(2):149-158.
[7]  16. Goldmann WH. Mechanotransduction and focal adhesions. Cell Biol Int, 2012, 36(7):649-652.
[8]  1. Mustoe TA, Cooter RD, Gold MH, et al. International clinical recommendations on scar management. Plast Reconstr Surg, 2002, 110(2):560-571.
[9]  2. Yagmur C, Akaishi S, Ogawa R, et al. Mechanical receptor-related mechanisms in scar management:a review and hypothesis. Plast Reconstr Surg, 2010, 126(2):426-434.
[10]  3. Derderian CA, Bastidas N, Lerman OZ, et al. Mechanical strain alters gene expression in an in vitro model of hypertrophic scarring. Ann Plast Surg, 2005, 55(1):69-75.
[11]  4. Ogawa R. Keloid and hypertrophic scarring may result from a mechanoreceptor or mechanosensitive nociceptor disorder. Med Hypotheses, 2008, 71(4):493-500.
[12]  5. Ogawa R. Mechanobiology of scarring. Wound Repair Regen, 2011, 19 Suppl 1:s2-9.
[13]  8. Balestrini JL, Billiar KL. Equibiaxial cyclic stretch stimulates fibroblasts to rapidly remodel fibrin. J Biomech, 2006, 39(16):2983-2990.
[14]  10. 舒茂国, 易成刚, 韩岩, 等. 机械应力刺激对培养的人成纤维细胞分泌生长因子的影响. 中国美容医学, 2008, 17(5):689-691.
[15]  11. Syedain ZH, Tranquillo RT. TGF-β1 diminishes collagen production during long-term cyclic stretching of engineered connective tissue:implication of decreased ERK signaling. J Biomech, 2011, 44(5):848-855.
[16]  12. Wipff PJ, Rifkin DB, Meister JJ, et al. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol, 2007, 179(6):1311-1323.
[17]  13. Wang Z, Fong KD, Phan TT, et al. Increased transcriptional response to mechanical strain in keloid fibroblasts due to increased focal adhesion complex formation. J Cell Physiol, 2006, 206(2):510-517.
[18]  14. Kanazawa Y, Nomura J, Yoshimoto S, et al. Cyclical cell stretching of skin-derived fibroblasts downregulates connective tissue growth factor (CTGF) production. Connect Tissue Res, 2009, 50(5):323-329.
[19]  15. Baker EL, Zaman MH. The biomechanical integrin. J Biomech, 2010, 43(1):38-44.
[20]  17. Cheng M, Guan X, Li H, et al. Shear stress regulates late EPC differentiation via mechanosensitive molecule-mediated cytoskeletal rearrangement. PLoS One, 2013, 8(7):e67675.
[21]  21. Demou ZN. Gene expression profiles in 3D tumor analogs indicate compressive strain differentially enhances metastatic potential. Ann Biomed Eng, 2010, 38(11):3509-3520.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133