全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

钛金属表面微纳结构协同抗菌肽的抗菌性能研究

DOI: doi:10.7507/1002-1892.201805022

Keywords: , 微纳结构, 抗菌肽, 抗菌性能, 植入材料

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的探讨通过构建材料表面微纳结构联合涂覆抗菌肽提升钛金属抗菌性能的可行性。方法取钛片进行喷砂酸蚀(sandblasted large-grit acid-etched,SLA)及碱热处理(alkali-heat treatment,AHT),构建微纳结构;然后表面旋涂 10、30、50、70、90 μg 抗菌肽聚合物。扫描电镜观察处理前后钛片表面形貌,能谱仪分析表面 C、N、O、Ti 4 种元素含量比例。将表面载有不同量抗菌肽聚合物的钛片与金黄色葡萄球菌液共培养,24 h 后观察抑菌圈形成情况,并测量抑菌圈直径。另将处理前、SLA 处理、SLA+ AHT 处理、载有 90 μg 抗菌肽聚合物的钛片分别与金黄色葡萄球菌以及大肠杆菌共培养,3 h 后扫描电镜观察两种细菌在材料表面的黏附情况,3、6、9、12、24 h 测量菌液吸光度(A)值,评价钛片抗菌效果。结果扫描电镜下观察,SLA+AHT 处理钛片表面构建包含微米及纳米级孔洞的多级结构;旋涂抗菌肽聚合物后表面孔径<200 nm 的孔洞几乎已被覆盖。元素分析显示,随着抗菌肽聚合物旋涂量的增加,C 元素含量不断增加;但直至含量达 70 μg 时才检测到 N 元素。培养 24 h 后,载有不同量抗菌肽聚合物钛片周围均出现明显抑菌圈,其中 90 μg 钛片大于其余钛片,比较差异均有统计学意义(P<0.05)。抗菌实验结果显示,载抗菌肽聚合物的钛片表面细菌黏附量较其余钛片明显减少,菌液A 值明显降低,比较差异有统计学意义(P<0.05)。结论通过在材料表面制备微纳结构并涂覆抗菌肽,可赋予钛金属表面优良的抗菌性能

References

[1]  1. Bai Y, Zhou R, Cao J, et al. Microarc oxidation coating covered Ti implants with micro-scale gouges formed by a multi-step treatment for improving osseointegration. Mater Sci Eng C Mater Biol Appl, 2017, 76: 908-917.
[2]  2. Prakash C, Uddin MS. Surface modification of β-phase Ti implant by hydroaxyapatite mixed electric discharge machining to enhance the corrosion resistance and in-vitro bioactivity. Surf Coat Tech, 2017, 326: 134-145.
[3]  3. Murphy M, Walczak MS, Thomas AG, et al. Toward optimizing dental implant performance: Surface characterization of Ti and TiZr implant materials. Dent Mater, 2017, 33: 43-53.
[4]  4. Adesanya O, Sprowson A, Masters J, et al. Review of the role of dynamic 18F-NaF PET in diagnosing and distinguishing between septic and aseptic loosening in hip prosthesis. J Orthop Surg Res, 2015, 10(1): 1-5.
[5]  5. Trtica M, Stasic J, Batani D, et al. Laser-assisted surface modification of Ti-implant in air and water environment. Appl Surf Sci, 2018, 428: 669-675.
[6]  7. Skovdal SM, J?rgensen NP, Petersen E, et al. Ultra-dense polymer brush coating reduces Staphylococcus epidermidis biofilms on medical implants and improves antibiotic treatment outcome. Acta Biomater, 2018, 76: 46-55.
[7]  8. Schneider S, Rudolph M, Bause V, et al. Electrochemical removal of biofilms from titanium dental implant surfaces. Bioelectro chemistry, 2018, 121: 84-94.
[8]  9. Kim S, Park C, Cheon KH, et al. Antibacterial and bioactive properties of stabilized silver on titanium with a nanostructured surface for dental applications. Appl Surf Sci, 2018, 451: 232-240.
[9]  10. Weng Y, Liu H, Ji S, et al. A promising orthopedic implant material with enhanced osteogenic and antibacterial activity: Al2O3-coated aluminum alloy. Appl Surf Sci, 2018, 457: 1025-1034.
[10]  6. Pantaroto HN, Ricomini-Filho AP, Bertolini M, et al. Antibacterial photocatalytic activity of different crystalline TiO2 phases in oral multispecies biofilm. Dent Mater, 2018, 34(7): e182-e195.
[11]  11. Diaz-Gomez L, Concheiro A, Alvarez-Lorenzo C. Functionalization of titanium implants with phase-transited lysozyme for gentle immobilization of antimicrobial lysozyme. Appl Surf Sci, 2018, 452: 32-42.
[12]  12. Hickok NJ, Shapiro IM, Chen AF. The impact of incorporating antimicrobials into implant surfaces. J Dent Res, 2018, 97(1): 14-22.
[13]  13. Raj RM, Priya P, Raj V. Gentamicin-loaded ceramic-biopolymer dual layer coatings on the Ti with improved bioactive and corrosion resistance properties for orthopedic applications. J Mech Behav Biome, 2018, 82: 299-309.
[14]  14. Xiang Y, Liu X, Mao C, et al. Infection-prevention on Ti implants by controlled drug release from folic acid/ZnO quantum dots sealed titania nanotubes. Mater Sci Eng C, 2018, 85: 214-224.
[15]  15. Dos Santos CA, Seckler MM, Ingle AP, et al. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci, 2014, 103(7): 1931-1944.
[16]  16. Chakraborty S, Liu R, Hayouka Z, et al. Ternary nylon-3 copolymers as host-defense peptide mimics: beyond hydrophobic and cationic subunits. J Am Chem Soc, 2014, 136(41): 14530-14535.
[17]  17. Liu R, Chen X, Falk SP, et al. Structure-activity relationships among antifungal nylon-3 polymers: materials active against drug-resistant strains of candida albicans. J Am Chem Soc, 2014, 136(11): 4333-4342.
[18]  18. Geng H, Yuan Y, Adayi A, et al. Engineered chimeric peptides with antimicrobial and titanium-binding functions to inhibit biofilm formation on Ti implants. Mater Sci Eng C, 2018, 82: 141-154.
[19]  19. Shi J, Liu Y, Wang Y, et al. Biological and immunotoxicity evaluation of antimicrobial peptide-loaded coatings using a layer-by-layer process on titanium. Sci Rep, 2015, 5: 16336.
[20]  20. He Y, Zhang Y, Shen X, et al. The fabrication and in vitro properties of antibacterial polydopamine-LL-37-POPC coatings on micro-arc oxidized titanium. Colloid Surf B, 2018, 170: 54-63.
[21]  21. Qian Y, Qi F, Chen Q, et al. Surface modified with a host defense peptide-mimicking β-peptide polymer kills bacteria on contact with high efficacy. ACS Appl Mater Interfaces, 2018, 10(18): 15395-15400.
[22]  22. Qin J, He H, Zhang W, et al. Effective incorporation of rhBMP-2 on implantable titanium disks with microstructures by using electrostatic spraying deposition. RSC Advances, 2016, 6(57): 51914-51923.
[23]  23. Trino LD, Dias LFG, Albano LGS, et al. Zinc oxide surface functionalization and related effects on corrosion resistance of titanium implants. Ceram Int, 2018, 44(4): 4000-4008.
[24]  24. Dou X, Zhang D, Feng C, et al. Bioinspired hierarchical surface structures with tunable wettability for regulating bacteria adhesion. ACS Nano, 2015, 9(11): 10664-10672.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133