全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

硫酸葡聚糖/重组人 BMP-2/壳聚糖复合微球联合珊瑚羟基磷灰石人造骨修复大段骨缺损影像学评价

DOI: doi:10.7507/1002-1892.201703094

Keywords: 硫酸葡聚糖, 重组人 BMP-2, 壳聚糖, 珊瑚羟基磷灰石, 骨缺损, 影像学

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的 通过影像学表现评价硫酸葡聚糖/重组人 BMP-2/壳聚糖(dextran sulfate/recombinant human BMP-2/chitosan,DS/rhBMP-2/CS)缓释微球联合珊瑚羟基磷灰石(coral hydroxyapatite,CHA),修复大段骨缺损的成骨效果。 方法 取 57 只 24 周龄雄性新西兰大白兔,制备右桡骨 20 mm 长骨缺损模型。将其中 54 只兔随机分为 3 组(n=18),A、B、C 组分别将 CHA、DS/rhBMP-2/CS/CHA 和 rhBMP-2/CHA 人工骨植入骨缺损区域中;余 3 只兔不植入材料作为空白对照组。术后观察动物大体情况;术后 4、8、12 周取材行 X 线片观察,Micro-CT 扫描及三维重建获取新生骨体积。 结果 实验动物术后恢复良好,大体情况正常。X 线片观察示,B 组术后各时间点骨愈合情况均优于 A、C 组;术后各时间点 B 组 X 线片评分显著高于 A、C 组(P<0.05);术后 8、12 周 C 组评分高于 A 组(P<0.05)。Micro-CT 扫描及三维重建观察示,术后各时间点 A 组骨缺损区新生骨组织少,成骨形态差;B 组新生骨组织多,骨缺损区骨塑形良好,12 周时逐渐接近正常骨形态;C 组骨缺损区新生骨组织较多,成骨形态一般。术后各时间点 B 组新生骨体积均显著高于 A、C 组(P<0.05),术后 8 周 C 组评分高于 A 组(P<0.05)。 结论 DS/rhBMP-2/CS/CHA 缓释人工骨的成骨效果明显优于单纯 CHA 和 rhBMP-2/CHA,为未来应用骨组织工程方法临床治疗骨缺损提供了新思路

References

[1]  8. Chaiyasan W, Prapubut S, Kompella UB, et al. Penetration of mucoadhesive chitosan-dextran sulfate nanoparticles into the porcine cornea. Colloids Surf B Biointerfaces, 2017, 149: 288-296.
[2]  14. Celik T, Yuksel D, Kosker M, et al. Vascularization of coralline versus synthetic hydroxyapatite orbital implants assessed by gadolinium enhanced magnetic resonance imaging. Curr Eye Res, 2014, 40(3): 346-353.
[3]  16. Riley EH, Lane JM, Urist MR, et al. Bone morphogenetic protein-2: biology and applications. Clin Orthop Relat Res, 1996, (324): 39-46.
[4]  17. Katagiri T, Yamaguchi A, Ikeda T, et al. The non-osteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein-2. Biochem Biophys Res Commun, 1990, 172(1): 295-299.
[5]  18. Hughes FJ, Collyer J, Stanfield M, et al. The effects of bone morphogenetic protein-2, -4, and-6 on differentiation of rat osteoblast cells in vitro. Endocrinology, 1995, 136(6): 2671-2677.
[6]  19. Long MW, Robinson JA, Ashcraft EA, et al. Regulation of human bone marrow-derived osteoprogenitor cells by osteogenic growth factors. J Clin Invest, 1995, 95(2): 881-887.
[7]  21. Ho ST, Hutmacher DW. A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials, 2006, 27(8): 1362-1376.
[8]  5. Mobasseri R, Karimi M, Tian L, et al. Hydrophobic lapatinib encapsulated dextran-chitosan nanoparticles using a toxic solvent free method: fabrication, release property & in vitro anti-cancer activity. Mater Sci Eng C Mater Biol Appl, 2017, 74: 413-421.
[9]  20. Katagiri T, Yamaguchi A, Komaki M, et al. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol, 1994, 127(6 Pt 1): 1755-1766.
[10]  22. 李东亚, 郑欣, 邱旭升, 等. 兔桡骨骨缺损动物模型中骨缺损长度及缺损位置的影像学比较研究. 中国矫形外科杂志, 2014, 22(8): 737-741.
[11]  23. 周芳, 李静, 余磊, 等. 兔桡骨临界骨缺损模型的制备. 中国组织工程研究与临床康复, 2011, 15(50): 9385-9388.
[12]  1. 夏远军, 章莹, 李丽华, 等. rhBMP-2/壳聚糖/硫酸葡聚糖复合微球制备及生物安全性研究. 中国骨科临床与基础研究杂志, 2013, 5(6): 345-349.
[13]  2. 夏远军, 章莹, 李丽华, 等. 壳聚糖/硫酸葡聚糖/重组人骨形态发生蛋白-2 微球对大鼠骨髓基质干细胞增殖与分化的影响. 中华创伤骨科杂志, 2014, 16(5): 421-426.
[14]  3. 夏远军. DSs/rh-BMP-2/CS 复合微球的制备及成骨活性研究. 广州: 南方医科大学, 2013.
[15]  4. 余翔, 夏远军, 郑晓辉, 等. 两种壳聚糖载 rhBMP-2 纳米微球对 SD 大鼠体内异位成骨的影响. 中国临床解剖学杂志, 2016, 34(4): 412-418.
[16]  6. Saboktakin MR, Tabatabaie RM, Maharramov A, et al. Synthesis and characterization of pH-dependent glycol chitosan and dextran sulfate nanoparticles for effective brain cancer treatment. Int J Biol Macromol, 2011, 49(4): 747-751.
[17]  7. Chaiyasan W, Srinivas SP, Tiyaboonchai W. Mucoadhesive chitosan-dextran sulfate nanoparticles for sustained drug delivery to the ocular surface. J Ocul Pharmacol Ther, 2013, 29(2): 200-207.
[18]  9. Gnanadhas DP, Ben Thomas M, Elango M, et al. Chitosan-dextran sulphate nanocapsule drug delivery system as an effective therapeutic against intraphagosomal pathogen Salmonella. J Antimicrob Chemother, 2013, 68(11): 2576-2586.
[19]  10. Sharma S, Mukkur TK, Benson HA, et al. Enhanced immune response against pertussis toxoid by IgA-loaded chitosan-dextran sulfate nanoparticles. J Pharm Sci, 2012, 101(1): 233-244.
[20]  11. Zaman P, Wang J, Blau A, et al. Incorporation of heparin-binding proteins into preformed dextran sulfate-chitosan nanoparticles. Int J Nanomedicine, 2016, 11: 6149-6159.
[21]  12. Costalat M, David L, Delair T. Reversible controlled assembly of chitosan and dextran sulfate: a new method for nanoparticle elaboration. Carbohydr Polym, 2014, 102: 717-726.
[22]  13. Costalat M, David L, Delair T. Reversible controlled assembly of chitosan and dextran sulfate: a new method for nanoparticle elaboration. Carbohydr Polym, 2014, 102: 717-726.
[23]  15. Yao AH, Li XD, Xiong L, et al. Hollow hydroxyapatite microspheres/chitosan composite as a sustained delivery vehicle for rhBMP-2 in the treatment of bone defects. J Mater Sci Mater Med, 2015, 26(1): 5336.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133