目的 通过影像学表现评价硫酸葡聚糖/重组人 BMP-2/壳聚糖(dextran sulfate/recombinant human BMP-2/chitosan,DS/rhBMP-2/CS)缓释微球联合珊瑚羟基磷灰石(coral hydroxyapatite,CHA),修复大段骨缺损的成骨效果。 方法 取 57 只 24 周龄雄性新西兰大白兔,制备右桡骨 20 mm 长骨缺损模型。将其中 54 只兔随机分为 3 组(n=18),A、B、C 组分别将 CHA、DS/rhBMP-2/CS/CHA 和 rhBMP-2/CHA 人工骨植入骨缺损区域中;余 3 只兔不植入材料作为空白对照组。术后观察动物大体情况;术后 4、8、12 周取材行 X 线片观察,Micro-CT 扫描及三维重建获取新生骨体积。 结果 实验动物术后恢复良好,大体情况正常。X 线片观察示,B 组术后各时间点骨愈合情况均优于 A、C 组;术后各时间点 B 组 X 线片评分显著高于 A、C 组(P<0.05);术后 8、12 周 C 组评分高于 A 组(P<0.05)。Micro-CT 扫描及三维重建观察示,术后各时间点 A 组骨缺损区新生骨组织少,成骨形态差;B 组新生骨组织多,骨缺损区骨塑形良好,12 周时逐渐接近正常骨形态;C 组骨缺损区新生骨组织较多,成骨形态一般。术后各时间点 B 组新生骨体积均显著高于 A、C 组(P<0.05),术后 8 周 C 组评分高于 A 组(P<0.05)。 结论 DS/rhBMP-2/CS/CHA 缓释人工骨的成骨效果明显优于单纯 CHA 和 rhBMP-2/CHA,为未来应用骨组织工程方法临床治疗骨缺损提供了新思路
References
[1]
8. Chaiyasan W, Prapubut S, Kompella UB, et al. Penetration of mucoadhesive chitosan-dextran sulfate nanoparticles into the porcine cornea. Colloids Surf B Biointerfaces, 2017, 149: 288-296.
[2]
14. Celik T, Yuksel D, Kosker M, et al. Vascularization of coralline versus synthetic hydroxyapatite orbital implants assessed by gadolinium enhanced magnetic resonance imaging. Curr Eye Res, 2014, 40(3): 346-353.
[3]
16. Riley EH, Lane JM, Urist MR, et al. Bone morphogenetic protein-2: biology and applications. Clin Orthop Relat Res, 1996, (324): 39-46.
[4]
17. Katagiri T, Yamaguchi A, Ikeda T, et al. The non-osteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein-2. Biochem Biophys Res Commun, 1990, 172(1): 295-299.
[5]
18. Hughes FJ, Collyer J, Stanfield M, et al. The effects of bone morphogenetic protein-2, -4, and-6 on differentiation of rat osteoblast cells in vitro. Endocrinology, 1995, 136(6): 2671-2677.
[6]
19. Long MW, Robinson JA, Ashcraft EA, et al. Regulation of human bone marrow-derived osteoprogenitor cells by osteogenic growth factors. J Clin Invest, 1995, 95(2): 881-887.
[7]
21. Ho ST, Hutmacher DW. A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials, 2006, 27(8): 1362-1376.
[8]
5. Mobasseri R, Karimi M, Tian L, et al. Hydrophobic lapatinib encapsulated dextran-chitosan nanoparticles using a toxic solvent free method: fabrication, release property & in vitro anti-cancer activity. Mater Sci Eng C Mater Biol Appl, 2017, 74: 413-421.
[9]
20. Katagiri T, Yamaguchi A, Komaki M, et al. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol, 1994, 127(6 Pt 1): 1755-1766.
6. Saboktakin MR, Tabatabaie RM, Maharramov A, et al. Synthesis and characterization of pH-dependent glycol chitosan and dextran sulfate nanoparticles for effective brain cancer treatment. Int J Biol Macromol, 2011, 49(4): 747-751.
[17]
7. Chaiyasan W, Srinivas SP, Tiyaboonchai W. Mucoadhesive chitosan-dextran sulfate nanoparticles for sustained drug delivery to the ocular surface. J Ocul Pharmacol Ther, 2013, 29(2): 200-207.
[18]
9. Gnanadhas DP, Ben Thomas M, Elango M, et al. Chitosan-dextran sulphate nanocapsule drug delivery system as an effective therapeutic against intraphagosomal pathogen Salmonella. J Antimicrob Chemother, 2013, 68(11): 2576-2586.
[19]
10. Sharma S, Mukkur TK, Benson HA, et al. Enhanced immune response against pertussis toxoid by IgA-loaded chitosan-dextran sulfate nanoparticles. J Pharm Sci, 2012, 101(1): 233-244.
[20]
11. Zaman P, Wang J, Blau A, et al. Incorporation of heparin-binding proteins into preformed dextran sulfate-chitosan nanoparticles. Int J Nanomedicine, 2016, 11: 6149-6159.
[21]
12. Costalat M, David L, Delair T. Reversible controlled assembly of chitosan and dextran sulfate: a new method for nanoparticle elaboration. Carbohydr Polym, 2014, 102: 717-726.
[22]
13. Costalat M, David L, Delair T. Reversible controlled assembly of chitosan and dextran sulfate: a new method for nanoparticle elaboration. Carbohydr Polym, 2014, 102: 717-726.
[23]
15. Yao AH, Li XD, Xiong L, et al. Hollow hydroxyapatite microspheres/chitosan composite as a sustained delivery vehicle for rhBMP-2 in the treatment of bone defects. J Mater Sci Mater Med, 2015, 26(1): 5336.