1. Hench LL, Splinter RJ, Allen WC, et al. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res, 1971, 5(6):117-141.
[2]
4. Montazerian M, Zanotto ED. History and trends of bioactive glass-ceramics. J Biomed Mater Res Part A, 2015, 104(5):1231-1249.
[3]
5. Wilson J, Low SB. Bioactive ceramics for periodontal treatment: comparative studies in the Patus monkey. J Appl Biomater, 1992, 3(2):123-129.
[4]
6. Xynos ID, Edgar AJ, Buttery LD, et al. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor Ⅱ mRNA expression and protein synthesis. Biochem Biophys Res Commun, 2000, 276(2): 461-465.
[5]
7. Ilharreborde B, Morel E, Fitoussi F, et al. Bioactive glass as a bone substitute for spinal fusion in adolescent idiopathic scoliosis: a comparative study with iliac crest autograft. J Pediatr Orthop, 2008, 28(3): 347-351.
[6]
8. Seddighi A, Seddighi AS, Zali AR, et al. Study of the role of nova bone as a filling material in cervical cage in anterior fusion of cervical spine in patients with degenerative cervical disc disease. Global Journal of Health Science, 2011, 170(1): 223-226.
[7]
9. Frantzén J, Rantakokko J, Aro HT, et al. Instrumented spondylodesis in degenerative spondylolisthesis with bioactive glass and autologous bone: a prospective 11-year follow-up. J Spinal Disord Tech, 2011, 24(7): 455-461.
[8]
10. Jones JR. Reprint of: Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia, 2015, 23: S53-S82.
12. Jones JR. Hierarchical porous scaffolds for bone regeneration//New materials and technologies for healthcare. London: Imperial College Press, 2011: 107-130.
[11]
13. Peitl Filho O, LaTorre GP, Hench LL. Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J Biomed Mater Res, 2015, 30(4): 509-514.
[12]
14. Moimas L, Biasotto M, Lenarda RD, et al. Rabbit pilot study on the resorbability of three-dimensional bioactive glass fibre scaffolds. Acta Biomaterialia, 2006, 2(2): 191-199.
[13]
15. Ghosh SK, Nandi SK, Kundu B, et al. In vivo response of porous hydroxyapatite and beta-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds. J Biomed Mater Res B Appl Biomater, 2008, 86(1): 217-227.
[14]
16. Jia W, Lau GY, Huang W, et al. Bioactive Glass for Large Bone Repair. Adv Healthc Mater, 2015, 4(18): 2842-2848.
[15]
17. Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials, 2006, 27(7): 964-973.
[16]
19. Fu Q, Saiz E, Tomsia AP. Bioinspired Strong and Highly Porous Glass Scaffolds. Adv Funct Mater, 2011, 21(6): 1058-1063.
[17]
2. Wilson J, Pigott GH, Schoen FJ, et al. Toxicology and biocompatibility of bioglasses. J Biomed Mater Res, 1981, 15(6): 805-817.
[18]
3. Kokubo T, Shigematsu M, Nagashima Y, et al. Apatite- and wollastonite-containg glass-ceramics for prosthetic application. Bull Inst Chem Res Kyoto Univ, 1982, 60(3-4): 260-268.
[19]
18. Wu ZY, Hill RG, Yue S, et al. Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique. Acta Biomater, 2011, 7(4): 1807-1816.
[20]
20. Mantsos T, Chatzistavrou X, Roether JA, et al. Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly(D, L-lactic acid) coatings. Biomed Mater, 2009, 4(5): 055002.
[21]
21. Gomez-Vega JM, Saiz E, Tomsia AP, et al. Novel Bioactive Functionally Graded Coatings on Ti6Al4V. Adv Mater, 2000, 12(12): 894-898.
[22]
22. Moritz N, Rossi S, Vedel E, et al. Implants coated with bioactive glass by CO2-laser, an in vivo study. J Mater Sci Mater Med, 2004, 15(7): 795-802.
[23]
23. Newman SD, Lotfibakhshaiesh N, O’Donnell M, et al. Enhanced osseous implant fixation with strontium-substituted bioactive glass coating. Tissue Eng Part A, 2014, 20(13-14): 1850-1857.
[24]
24. Vitale-Brovarone C, Baino F, Tallia F, et al. Bioactive glass-derived trabecular coating: a smart solution for enhancing osteointegration of prosthetic elements. J Mater Sci Mater Med, 2012, 23(10): 2369-2380.
[25]
25. Leach JK, Kaigler D, Wang Z, et al. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials, 2006, 27(17): 3249-3255.
27. Zhang Y, Xu C, Zhao S, et al. Evaluation of injectable strontium-containing borate bioactive glass cement with enhanced osteogenic capacity in a critical-sized rabbit femoral condyle defect model. ACS Appl Mater Interfaces, 2015, 7(4): 2393-2403.
[28]
28. Rahaman MN, Bal BS, Huang W. Review: emerging developments in the use of bioactive glasses for treating infected prosthetic joints. Mater Sci Eng C Mater Biol Appl, 2014, 41: 224-231.
[29]
29. Ragel CV, Vallet-Regí M. In vitro bioactivity and gentamicin release from glass-polymer-antibiotic composites. J Biomed Mater Res, 2000, 51(3): 424-429.
[30]
30. Rivadeneira J, Di Virgilio AL, Audisio MC, et al. Evaluation of antibacterial and cytotoxic effects of nano-sized bioactive glass/collagen composites releasing tetracycline hydrochloride. J Appl Microbiol, 2014, 116(6): 1438-1446.
[31]
31. Jia WT, Zhang X, Luo SH, et al. Novel borate glass/chitosan composite as a delivery vehicle for teicoplanin in the treatment of chronic osteomyelitis. Acta Biomater, 2010, 6(3): 812-819.
[32]
32. 谢宗平. 生物玻璃载药缓释的实验研究. 上海: 上海交通大学, 2009.
[33]
33. Xia W, Chang J. Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J Control Release, 2006, 110(3): 522-530.
35. Zhu M, Shi JL, He QJ, et al. An emulsification-solvent evaporation route to mesoporous bioactive glass microspheres for bisphosphonate drug delivery. J Mater Sci, 2012, 47(5): 2256-2263.
[36]
36. Wei L, Ke J, Prasadam I, et al. A comparative study of Sr-incorporated mesoporous bioactive glass scaffolds for regeneration of osteopenic bone defects. Osteoporos Int, 2014, 25(8): 2089-2096.
[37]
37. Gérard C, Bordeleau LJ, Barralet J, et al. The stimulation of angiogenesis and collagen deposition by copper. Biomaterials, 2009, 31(5): 824-831.
39. Wang H, Zhao S, Xiao W, et al. Influence of Cu doping in borosilicate bioactive glass and the properties of its derived scaffolds. Mater Sci Eng C Mater Biol Appl, 2016, 58: 194-203.
[40]
40. Samira J, Saoudi M, Abdelmajid K, et al. Accelerated bone ingrowth by local delivery of Zinc from bioactive glass: oxidative stress status, mechanical property, and microarchitectural characterization in an ovariectomized rat model. Libyan J Med, 2015, 10: 28572.