2. Liang SX, Tan TY, Gaudry L, et al. Differentiation and migration of Sca1/CD31-cardiac side population cells in a mouse infarction model. Int J Cardiol, 2010, 138(1):40-49.
[2]
5. Murtuza B, Nichol JW, Khademhosseini A. Micro- and nanoscale control of the cardiac stem cell niche for tissue fabrication. Tissue Eng Part B Rev, 2009, 15(4):443-453.
[3]
8. Moore L, Fan D, Basu R, et al. Tissue inhibitor of metalloproteinases (TIMPs) in heart failure. Heart Fail Rev, 2012, 17(4-5):693-706.
[4]
10. French KM, Boopathy AV, DeQuach JA, et al. A naturally derived cardiac extracellular matrix enhances cardiac progenitor cell behavior in vitro. Acta Biomater, 2012, 8(12):4357-4364.
[5]
12. Castaldo C, Di Meglio F, Miraglia R, et al. Cardiac fibroblast-derived extracellular matrix (biomatrix) as a model for the studies of cardiac primitive cell biological properties in normal and pathological adult human heart. Biomed Res Int, 2013:352370.
[6]
14. Teodori L, Costa A, Marzio R, et al. Native extracellular matrix:a new scaffolding platform for repair of damaged muscle. Front Physiol, 2014, 5:218.
[7]
16. Johnson AN, Mokalled MH, Haden TN, et al. JAK/Stat signaling regulates heart precursor diversification in Drosophila. Development, 2011, 138(21):4627-4638.
[8]
18. Hoebaus J, Heher P, Gottschamel T, et al. Embryonic stem cells facilitate the isolation of persistent clonal cardiovascular progenitor cell lines and leukemia inhibitor factor maintains their self-renewal and myocardial differentiation potential in vitro. Cells Tissues Organs, 2013, 197(4):249-268.
[9]
26. Cottage CT, Bailey B, Fischer KM, et al. Cardiac progenitor cell cycling stimulated by pim-1 kinase. Circ Res, 2010, 106(5):891-901.
[10]
29. Rota M, Hosoda T, De Angelis A. et al. The young mouse heart is composed of myocytes heterogeneous in age and function. Circ Res, 2007, 101(4):387-399.
[11]
13. Zhang J, Klos M, Wilson GF, et al. Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells:the matrix sandwich method. Circ Res, 2012, 111(9):1125-1136.
[12]
15. Popescu LM, Gherghiceanu M, Manole CG, et al. Interstitial Cajal-like cells nurse cardiomyocyte progenitors in epicardial stem cell niches. J Cell Mol Med, 2009, 13(5):866-886.
[13]
17. Mohri T, Iwakura T, Nakayama H, et al. JAK-STAT signaling in cardiomyogenesis of cardiac stem cells. JAKSTAT, 2012, 1(2):125-130.
[14]
28. Mohyeldin A, Garzón-Muvdi T, Qui?ones-Hinojosa A. Oxygen in stem cell biology:a critical component of the stem cell niche. Cell Stem Cell, 2010, 7(2):150-161.
[15]
30. Kocabas F, Mahmoud AI, Sosic D, et al. The hypoxic epicardial and subepicardial microenvironment. J Cardiovasc Transl Res, 2012, 5(5):654-665.
[16]
31. Sanada F, Kim J, Czarna A, et al. c-Kit-positive cardiac stem cells nested in hypoxic niches are activated by stem cell factor reversing the aging myopathy. Circ Res, 2014, 114(1):41-55.
[17]
32. Li TS, Marbán E. Physiological levels of reactive oxygen species are required to maintain genomic stability in stem cells. Stem Cells, 2010, 28(7):1178-1185.
[18]
1. Kr?nkel N, Spinetti G, Amadesi S, et al. Targeting stem cell niches and trafficking for cardiovascular therapy. Pharmacol Ther, 2011, 129(1):62-81.
[19]
7. Hynes RO, Naba A. Overview of the matrisome-an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol, 2012, 4(1):a004903.
[20]
9. Porter KE, Turner NA. Cardiac fibroblasts:at the heart of myocardial remodeling. Pharmacol Ther, 2009, 123(2):255-278.
[21]
11. Barallobre-Barreiro J, Didangelos A, Schoendube FA, et al. Proteomics analysis of cardiac extracellular matrix remodeling in a porcine model of ischemia/reperfusion injury. Circulation, 2012, 125(6):789-802.
[22]
3. Bollini S, Smart N, Riley PR. Resident cardiac progenitor cells:at the heart of regeneration. J Mol Cell Cardiol, 2011, 50(2):296-303.
[23]
4. Urbanek K, Cesselli D, Rota M, et al. Stem cell niches in the adult mouse heart. Proc Natl Acad Sci U S A, 2006, 103(24):9226-9231.
[24]
6. Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material:structure and function. Acta Biomater, 2009, 5(1):1-13.
[25]
19. Grigoryan T, Wend P, Klaus A, et al. Deciphering the function of canonical Wnt signals in development and disease:conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev, 2008, 22(17):2308-2341.
[26]
20. Liu J, Wang Y, Du W, et al. Wnt1 inhibits hydrogen peroxide-induced apoptosis in mouse cardiac stem cells. PLoS One, 2013, 8(3):e58883.
[27]
21. Kwon C, Cheng P, King IN, et al. Notch post-translationally regulates β-catenin protein in stem and progenitor cells. Nat Cell Biol, 2011, 13(10):1244-1251.
[28]
22. Noack C, Zafiriou MP, Schaeffer HJ, et al. Krueppel-like factor 15 regulates Wnt/β-catenin transcription and controls cardiac progenitor cell fate in the postnatal heart. EMBO Mol Med, 2012, 4(9):992-1007.
24. Mauri F, Reichardt I, Mummery-Widmer JL, et al. The conserved siscs-large binding partner Banderuola regulates asymmetric cell division in Drosophila. Curr Biol, 2014, 24(16):1811-1825.
[31]
25. Song Y, Lu B. Interaction of Notch signaling modulator Numb with α-Adaptin regulates endocytosis of Notch pathway components and cell fate determination of neural stem cells. J Biol Chem, 2012, 287(21):17716-17728.
[32]
27. Ferreira-Martins J, Ogórek B, Cappetta D, et al. Cardiomyogenesis in the developing heart is regulated by c-kit-positive cardiac stem cells. Circ Res, 2012, 110(5):701-715.
[33]
33. Kocabas F, Mahmoud AI, Sosic D, et al. The hypoxic epicardial and subepicardial microenvironment. J Cardiovasc Transl Res, 2012, 5(5):654-665.
[34]
34. Matsuda T, Miyagawa S, Fukushima S, et al. Human cardiac stem cells with reduced notch signaling show enhanced therapeutic potential in a rat acute infarction model. Circ J, 2014, 78(1):222-231.