全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

丝素蛋白/聚乳酸-聚己内酯纳米纤维支架对兔腱-骨愈合影响的实验研究

DOI: doi:10.7507/1002-1892.201704077

Keywords: 前交叉韧带, 丝素蛋白, 聚乳酸-聚己内酯, 纳米纤维支架, 腱-骨愈合,

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的探讨丝素蛋白(silk fibroin,SF)/聚乳酸-聚己内酯[poly(L-lactic acid-co-e-caprolactone),P(LLA-CL)]纳米纤维支架对兔腱-骨愈合的影响。方法通过静电纺丝技术制备 SF/P(LLA-CL)纳米纤维支架,扫描电镜观察材料形貌;并将支架与小鼠胚胎成骨细胞前体细胞 MC3T3-E1 复合培养 1、3、5 d,扫描电镜观察细胞黏附、增殖情况。取 24 只新西兰大白兔随机分为两组(n=12),对照组采用自体肌腱、实验组采用 SF/P(LLA-CL)纤维纳米支架包裹自体肌腱建立关节外模型;术后 6、12 周采用组织学和生物力学测试评价腱-骨愈合情况。结果SF/P(LLA-CL)纳米纤维支架为非取向结构,纤维直径为(219.4±66.5)nm;复合培养后,MC3T3-E1 细胞在支架上生长良好,并随时间延长细胞逐渐增多。组织学观察示,术后 6 周两组腱-骨界面均有炎性细胞浸润,界面宽度未见明显差异;12 周时实验组腱-骨界面可见新骨长入,而对照组无新骨长入。生物力学测试,术后 6 周,两组失效负荷及刚度比较差异均无统计学意义(P>0.05);12 周时实验组失效负荷及刚度均显著高于对照组(P<0.05)。结论SF/P(LLA-CL)纳米纤维支架具有较好的细胞相容性,能有效促进兔腱-骨愈合,为临床上 ACL 重建移植物的改良提供新思路

References

[1]  7. Zhang K, Wang H, Huang C, et al. Fabrication of silk fibroin blended P(LLA-CL) nanofibrous scaffolds for tissue engineering. J Biomed Mater Res A, 2010, 93(3): 984-993.
[2]  13. Shanmugavel S, Reddy VJ, Ramakrishna S, et al. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering. J Biomater Appl, 2014, 29(1): 46-58.
[3]  14. Vetsch JR, Paulsen SJ, Müller R, et al. Effect of fetal bovine serum on mineralization in silk fibroin scaffolds. Acta Biomater, 2015, 13: 277-285.
[4]  16. Jung SR, Song NJ, Yang DK, et al. Silk proteins stimulate osteoblast differentiation by suppressing the Notch signaling pathway in mesenchymal stem cells. Nutr Res, 2013, 33(2): 162-170.
[5]  18. Li Y, Jiang X, Zhong H, et al. Hierarchical Patterning of Cells with a Microeraser and Electrospun Nanofibers. Small, 2016, 12(9): 1230-1239.
[6]  11. 高林峰, 王洪复. 骨基质 Ⅰ 型胶原的增龄性改变. 中华老年医学杂志, 2001, 20(6): 465-467.
[7]  12. Takeuchi A, Ohtsuki C, Miyazaki T, et al. Deposition of bone-like apatite on silk fiber in a solution that mimics extracellular fluid. J Biomed Mater Res A, 2003, 65(2): 283-289.
[8]  17. Wang H, Pieper J, Peters F, et al. Synthetic scaffold morphology controls human dermal connective tissue formation. J Biomed Mater Res A, 2005, 74(4): 523-532.
[9]  19. Sperling LE, Reis KP, Pozzobon LG, et al. Influence of random and oriented electrospun fibrous poly(lactic-co-glycolic acid) scaffolds on neural differentiation of mouse embryonic stem cells. J Biomed Mater Res A, 2017, 105(5): 1333-1345.
[10]  20. Yin Z, Chen X, Chen JL, et al. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials, 2010, 31(8): 2163-2175.
[11]  21. Yin Z, Chen X, Song HX, et al. Electrospun scaffolds for multiple tissues regeneration in vivo through topography dependent induction of lineage specific differentiation. Biomaterials, 2015, 44: 173-185.
[12]  1. Spindler KP, Warren TA, Callison JC Jr, et al. Clinical outcome at a minimum of five years after reconstruction of the anterior cruciate ligament. J Bone Joint Surg (Am), 2005, 87(8): 1673-1679.
[13]  2. Lohmander LS, Englund PM, Dahl LL, et al. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med, 2007, 35(10): 1756-1769.
[14]  3. 张承昊, 李棋, 唐新, 等. 促进腱-骨愈合方法的研究进展. 中国修复重建外科杂志, 2015, 29(7): 912-916.
[15]  4. Sridhar R, Lakshminarayanan R, Madhaiyan K, et al. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev, 2015, 44(3): 790-814.
[16]  5. Claes S, Verdonk P, Forsyth R, et al. The " ligamentization” process in anterior cruciate ligament reconstruction: what happens to the human graft? A systematic review of the literature. Am J Sports Med, 2011, 39(11): 2476-2483.
[17]  6. Atesok K, Fu FH, Wolf MR, et al. Augmentation of tendon-to-bone healing. J Bone Joint Surg (Am), 2014, 96(6): 513-521.
[18]  8. Wang CY, Zhang KH, Fan CY, et al. Aligned natural-synthetic polyblend nanofibers for peripheral nerve regeneration. Acta Biomater, 2011, 7(2): 634-643.
[19]  9. Chen J, Yan C, Zhu M, et al. Electrospun nanofibrous SF/P(LLA-CL) membrane: a potential substratum for endothelial keratoplasty. Int J Nanomedicine, 2015, 10: 3337-3350.
[20]  10. Wang Z, Lin M, Xie Q, et al. Electrospun silk fibroin/poly(lactide-co-epsilon-caprolactone) nanofibrous scaffolds for bone regeneration. Int J Nanomedicine, 2016, 11: 1483-1500.
[21]  15. Midha S, Murab S, Ghosh S. Osteogenic signaling on silk-based matrices. Biomaterials, 2016, 97: 133-153.
[22]  22. Zhang C, Yuan H, Liu H, et al. Well-aligned chitosan-based ultrafine fibers committed teno-lineage differentiation of human induced pluripotent stem cells for Achilles tendon regeneration. Biomaterials, 2015, 53: 716-730.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133