7. Zhang K, Wang H, Huang C, et al. Fabrication of silk fibroin blended P(LLA-CL) nanofibrous scaffolds for tissue engineering. J Biomed Mater Res A, 2010, 93(3): 984-993.
[2]
13. Shanmugavel S, Reddy VJ, Ramakrishna S, et al. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering. J Biomater Appl, 2014, 29(1): 46-58.
[3]
14. Vetsch JR, Paulsen SJ, Müller R, et al. Effect of fetal bovine serum on mineralization in silk fibroin scaffolds. Acta Biomater, 2015, 13: 277-285.
[4]
16. Jung SR, Song NJ, Yang DK, et al. Silk proteins stimulate osteoblast differentiation by suppressing the Notch signaling pathway in mesenchymal stem cells. Nutr Res, 2013, 33(2): 162-170.
[5]
18. Li Y, Jiang X, Zhong H, et al. Hierarchical Patterning of Cells with a Microeraser and Electrospun Nanofibers. Small, 2016, 12(9): 1230-1239.
12. Takeuchi A, Ohtsuki C, Miyazaki T, et al. Deposition of bone-like apatite on silk fiber in a solution that mimics extracellular fluid. J Biomed Mater Res A, 2003, 65(2): 283-289.
[8]
17. Wang H, Pieper J, Peters F, et al. Synthetic scaffold morphology controls human dermal connective tissue formation. J Biomed Mater Res A, 2005, 74(4): 523-532.
[9]
19. Sperling LE, Reis KP, Pozzobon LG, et al. Influence of random and oriented electrospun fibrous poly(lactic-co-glycolic acid) scaffolds on neural differentiation of mouse embryonic stem cells. J Biomed Mater Res A, 2017, 105(5): 1333-1345.
[10]
20. Yin Z, Chen X, Chen JL, et al. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials, 2010, 31(8): 2163-2175.
[11]
21. Yin Z, Chen X, Song HX, et al. Electrospun scaffolds for multiple tissues regeneration in vivo through topography dependent induction of lineage specific differentiation. Biomaterials, 2015, 44: 173-185.
[12]
1. Spindler KP, Warren TA, Callison JC Jr, et al. Clinical outcome at a minimum of five years after reconstruction of the anterior cruciate ligament. J Bone Joint Surg (Am), 2005, 87(8): 1673-1679.
[13]
2. Lohmander LS, Englund PM, Dahl LL, et al. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med, 2007, 35(10): 1756-1769.
4. Sridhar R, Lakshminarayanan R, Madhaiyan K, et al. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev, 2015, 44(3): 790-814.
[16]
5. Claes S, Verdonk P, Forsyth R, et al. The " ligamentization” process in anterior cruciate ligament reconstruction: what happens to the human graft? A systematic review of the literature. Am J Sports Med, 2011, 39(11): 2476-2483.
[17]
6. Atesok K, Fu FH, Wolf MR, et al. Augmentation of tendon-to-bone healing. J Bone Joint Surg (Am), 2014, 96(6): 513-521.
[18]
8. Wang CY, Zhang KH, Fan CY, et al. Aligned natural-synthetic polyblend nanofibers for peripheral nerve regeneration. Acta Biomater, 2011, 7(2): 634-643.
[19]
9. Chen J, Yan C, Zhu M, et al. Electrospun nanofibrous SF/P(LLA-CL) membrane: a potential substratum for endothelial keratoplasty. Int J Nanomedicine, 2015, 10: 3337-3350.
[20]
10. Wang Z, Lin M, Xie Q, et al. Electrospun silk fibroin/poly(lactide-co-epsilon-caprolactone) nanofibrous scaffolds for bone regeneration. Int J Nanomedicine, 2016, 11: 1483-1500.
[21]
15. Midha S, Murab S, Ghosh S. Osteogenic signaling on silk-based matrices. Biomaterials, 2016, 97: 133-153.
[22]
22. Zhang C, Yuan H, Liu H, et al. Well-aligned chitosan-based ultrafine fibers committed teno-lineage differentiation of human induced pluripotent stem cells for Achilles tendon regeneration. Biomaterials, 2015, 53: 716-730.