14. Letellier K, Azeddine B, Parent S, et al. Estrogen cross-talk with the melatonin signaling pathway in human osteoblasts derived from adolescent idiopathic scoliosis patients. J Pineal Res, 2008, 45(4):383-393.
[2]
15. Fendri K, Patten S, Zaouter C, et al. Recent advances in the study of candidate genes for adolescent idiopathic scoliosis. Stud Health Technol Inform, 2010, 158:3-7.
[3]
16. Grivas TB, Vasiliadis E, Mouzakis V, et al. Association between adolescent idiopathic scoliosis prevalence and age at menarche in different geographic latitudes. Scoliosis, 2006, 1:9.
[4]
17. DiMeglio A, Canavese F, Charles YP. Growth and adolescent idiopathic scoliosis:when and how much? J Pediatr Orthop, 2011, 31(1 Suppl):S28-36.
[5]
18. Sanders JO. Maturity indicators in spinal deformity. J Bone Joint Surg (Am), 2007, 89 Suppl 1:14-20.
[6]
20. Goldberg CJ, Dowling FE, Fogarty EE. Adolescent idiopathic scoliosis-early menarche, normal growth. Spine (Phila Pa 1976), 1993, 18(5):529-535.
[7]
21. Warren MP, Brooks-Gunn J, Hamilton LH, et al. Scoliosis and fractures in young ballet dancers. Relation to delayed menarche and secondary amenorrhea. N Engl J Med, 1986, 314(21):1348-1353.
[8]
22. Mao SH, Jiang J, Sun X, et al. Timing of menarche in Chinese girls with and without adolescent idiopathic scoliosis:current results and review of the literature. Eur Spine J, 2011, 20(2):260-265.
[9]
23. Yim AP, Yeung HY, Hung VW, et al. Abnormal skeletal growth patterns in adolescent idiopathic scoliosis-a longitudinal study until skeletal maturity. Spine (Phila Pa 1976), 2012, 37(18):E1148-1154.
[10]
24. Janusz P, Kotwicka M, Andrusiewicz M, et al. Estrogen receptors genes polymorphisms and age at menarche in idiopathic scoliosis. BMC Musculoskelet Disord, 2014, 15:383.
[11]
19. Ylikoski M. Height of girls with adolescent idiopathic scoliosis. Eur Spine J, 2003, 12(3):288-291.
[12]
25. Dvornyk V, Waqar-ul-Haq. Genetics of age at menarche:a systematic review. Hum Reprod Update, 2012, 18(2):198-210.
[13]
26. Inoue M, Minami S, Nakata Y, et al. Association between estrogen receptor gene polymorphisms and curve severity of idiopathic scoliosis. Spine (Phila Pa 1976), 2002, 27(21):2357-2362.
[14]
27. Wu J, Qiu Y, Zhang L, et al. Association of estrogen receptor gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Spine (Phila Pa 1976), 2006, 31(10):1131-1136.
[15]
28. Xu L, Qiu X, Sun X, et al. Potential genetic markers predicting the outcome of brace treatment in patients with adolescent idiopathic scoliosis. Eur Spine J, 2011, 20(10):1757-1764.
[16]
29. Chen S, Zhao L, Roffey DM, et al. Association between the ESR1-351A>G single nucleotide polymorphism (rs9340799) and adolescent idiopathic scoliosis:a systematic review and metaanalysis. Eur Spine J, 2014, 23(12):2586-2593.
[17]
30. Tang NL, Yeung HY, Lee KM, et al. A relook into the association of the estrogen receptor alpha gene (PvuⅡ, XbaI) and adolescent idiopathic scoliosis:a study of 540 Chinese cases. Spine (Phila Pa 1976), 2006, 31(21):2463-2468.
[18]
32. Janusz P, Kotwicki T, Andrusiewicz M, et al. XbaI and PvuⅡ polymorphisms of estrogen receptor 1 gene in females with idiopathic scoliosis:no association with occurrence or clinical form. PLoS One, 2013, 8(10):e76806.
[19]
33. Zhao D, Qiu GX, Wang YP, et al. Association between adolescent idiopathic scoliosis with double curve and polymorphisms of calmodulin1 gene/estrogen receptor-alpha gene. Orthop Surg, 2009, 1(3):222-230.
35. Zhang HQ, Lu SJ, Tang MX, et al. Association of estrogen receptor beta gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Spine (Phila Pa 1976), 2009, 34(8):760-764.
[22]
36. Kotwicki T, Janusz P, Andrusiewicz M, et al. Estrogen receptor 2 gene polymorphism in idiopathic scoliosis. Spine (Phila Pa 1976), 2014, 39(26):E1599-1607.
[23]
31. Takahashi Y, Matsumoto M, Karasugi T, et al. Replication study of the association between adolescent idiopathic scoliosis and two estrogen receptor genes. J Orthop Res, 2011, 29(6):834-837.
[24]
37. Maggiolini M, Picard D. The unfolding stories of GPR30, a new membrane-bound estrogen receptor. J Endocrinol, 2010, 204(2):105-114.
[25]
38. Heino TJ, Chagin AS, S?vendahl L. The novel estrogen receptor G-protein-coupled receptor 30 is expressed in human bone. J Endocrinol, 2008, 197(2):R1-6.
[26]
39. Peng Y, Liang G, Pei Y, et al. Genomic polymorphisms of G-protein estrogen receptor 1 are associated with severity of adolescent idiopathic scoliosis. Int Orthop, 2012, 36(3):671-677.
[27]
42. Peschke E. Melatonin, endocrine pancreas and diabetes. J Pineal Res, 2008, 44(1):26-40.
[28]
43. Sanchez-Barcelo EJ, Cos S, Mediavilla D, et al. Melatonin-estrogen interactions in breast cancer. J Pineal Res, 2005, 38(4):217-222.
[29]
44. del Río B, García Pedrero JM, Martínez-Campa C, et al. Melatonin, an endogenous-specific inhibitor of estrogen receptor alpha via calmodulin. J Biol Chem, 2004, 279(37):38294-38302.
[30]
1. Weinstein SL, Dolan LA, Cheng JC, et al. Adolescent idiopathic scoliosis. Lancet, 2008, 371(9623):1527-1537.
[31]
2. Wang WJ, Yeung HY, Chu WC, et al. Top theories for the etiopathogenesis of adolescent idiopathic scoliosis. J Pediatr Orthop, 2011, 31(1 Suppl):S14-27.
[32]
3. Leboeuf D, Letellier K, Alos N, et al. Do estrogens impact adolescent idiopathic scoliosis? Trends Endocrinol Metab, 2009, 20(4):147-152.
[33]
4. Li M, Wang CF, Gu SX, et al. Adapted simplified Chinese (mainland) version of Scoliosis Research Society-22 questionnaire. Spine (Phila Pa 1976), 2009, 34(12):1321-1324.
[34]
5. Trygstad O. Oestrogen treatment of adolescent tall girls; short term side effects. Acta Endocrinol Suppl (Copenh), 1986, 279:170-173.
[35]
6. Cutler GB Jr. The role of estrogen in bone growth and maturation during childhood and adolescence. J Steroid Biochem Mol Biol, 1997, 61(3-6):141-144.
[36]
7. Iwamuro S, Sakakibara M, Terao M, et al. Teratogenic and antimetamorphic effects of bisphenol A on embryonic and larval Xenopus laevis. Gen Comp Endocrinol, 2003, 133(2):189-198.
[37]
8. Boudreau M, Courtenay SC, MacLatchy DL, et al. Utility of morphological abnormalities during early-life development of the estuarine mummichog, Fundulus heteroclitus, as an indicator of estrogenic and antiestrogenic endocrine disruption. Environ Toxicol Chem, 2004, 23(2):415-425.
[38]
9. Raczkowski JW. The concentrations of testosterone and estradiol in girls with adolescent idiopathic scoliosis. Neuro Endocrinol Lett, 2007, 28(3):302-304.
[39]
10. Sanders JO, Browne RH, McConnell SJ, et al. Maturity assessment and curve progression in girls with idiopathic scoliosis. J Bone Joint Surg (Am), 2007, 89(1):64-73.
[40]
11. Kulis A, Zarzycki D, Jaskiewicz J. Concentration of estradiol in girls with idiophatic scoliosis. Ortop Traumatol Rehabil, 2006, 8(4):455-459.
[41]
12. Kulis A, Jaskiewicz J. Concentration of selected regulators of calcium-phosphate balance in girls with idiopathic scoliosis. Ortop Traumatol Rehabil, 2009, 11(5):438-447.
[42]
13. Esposito T, Uccello R, Caliendo R, et al. Estrogen receptor polymorphism, estrogen content and idiopathic scoliosis in human:a possible genetic linkage. J Steroid Biochem Mol Biol, 2009, 116(1-2):56-60.
[43]
40. Ogura Y, Takahashi Y, Kou I, et al. A replication study for association of 5 single nucleotide polymorphisms with curve progression of adolescent idiopathic scoliosis in Japanese patients. Spine (Phila Pa 1976), 2013, 38(7):571-575.
[44]
41. Watson CS, Jeng YJ, Kochukov MY. Nongenomic actions of estradiol compared with estrone and estriol in pituitary tumor cell signaling and proliferation. FASEB J, 2008, 22(9):3328-3336.