全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

基质细胞衍生因子1与组织工程支架复合移植的研究进展

DOI: doi:10.7507/1002-1892.20150250

Keywords: 基质细胞衍生因子1, 组织工程支架, 组织损伤, 原位修复

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的综述基质细胞衍生因子1(stromal-derived factor 1,SDF-1)与组织工程支架复合移植的研究进展。 方法查阅国内外有关SDF-1与不同组织工程支架复合移植的相关文献,回顾SDF-1趋化干细胞的主要机制与作用,并综述不同类别组织工程支架与SDF-1复合修复组织或器官损伤的作用及效果。 结果SDF-1与组织工程支架复合后能发挥趋化多能干细胞作用,但作用机制尚未完全清楚;其在体内应用的效果有待继续研究。 结论SDF-1与组织工程支架复合用于原位组织或器官修复已取得一些进展,今后需在SDF-1对干细胞的趋化机制及增殖分化的影响方面进行探索

References

[1]  1. Heng BC, Haider HK, Cao T. Combining transfusion of stem/ progenitor cells into the peripheral circulation with localized transplantation in situ at the site of tissue/organ damage:a possible strategy to optimize the efficacy of stem cell transplantation therapy. Med Hypotheses, 2005, 65(3):494-497.
[2]  5. Wynn RF, Hart CA, Corradi-Perini C, et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood, 2004, 104(9):2643-2645.
[3]  6. Weeks S, Kulkarni A, Smith H, et al. The effects of chemokine, adhesion and extracellu-lar matrix molecules on binding of mesenchymal stromal cells to poly (L-lactic acid). Cytotherapy, 2012, 14(9):1080-1088.
[4]  7. Narita T, Shintani Y, Ikebe C, et al. The use of scaffold-free cell sheet technique to refine mesenchymal stromal cell-based therapy for heart failure. Mol Ther, 2013, 21(4):860-867.
[5]  8. Veronesi E, Murgia A, Caselli A, et al. Transportation conditions for prompt use of ex vivo expanded and freshly harvested clinicalgrade bone marrow mesenchymal stromal/stem cells for bone regeneration. Tissue Eng Part C Methods, 2014, 20(3):239-251.
[6]  9. Yamaguchi J, Kusano KF, Masuo O, et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation, 2003, 107(9):1322-1328.
[7]  10. Suzuki T, Lee CH, Chen M, et al. Induced migration of dental pulp stem cells for in vivo pulp regeneration. J Dent Res, 2011, 90(8): 1013-1018.
[8]  11. Mendelson A, Frank E, Allred C, et al. Chondrogenesis by chemotactic homing of synovium, bone marrow, and adipose stem cells in vitro. FASEB J, 2011, 25(10):3496-3504.
[9]  13. Chim H, Miller E, Gliniak C, et al. Stromal-cell-derived factor (SDF) 1-alpha in combination with BMP-2 and TGF-β1 induces site-directed cell homing and osteogenic and chondrogenic differentiation for tissue engineering without the requirement for cell seeding. Cell Tissue Res, 2012, 350(1):89-94.
[10]  15. Kim K, Lee CH, Kim BK, et al. Anatomically shaped tooth and periodontal regeneration by cell homing. J Dent Res, 2010, 89(8): 842-847.
[11]  19. Thevenot PT, Nair AM, Shen J, et al. The effect of incorporation of SDF-1alpha into PLGA scaffolds on stem cell recruitment and the inflammatory response. Biomaterials, 2010, 31(14):3997-4008.
[12]  28. Caliari SR, Harley BA. Composite growth factor supplementation strategies to enhance tenocyte bioactivity in aligned collagen-GAG scaffolds. Tissue Eng Part A, 2013, 19(9-10):1100-1112.
[13]  31. Naderi-Meshkin H, Matin MM, Heirani-Tabasi A, et al. Injectable hydrogel delivery plus preconditioning of mesenchymal stem cells: exploitation of SDF-1/CXCR4 axis towards enhancing the efficacy of stem cells' homing. Cell Biol Int, 2015.[Epub ahead of print].
[14]  34. Kurane A, Vyavahare N. In vivo vascular tissue engineering: influence of cytokine and implant location on tissue specific cellular recruitment. J Tissue Eng Regen Med, 2009, 3(4):280-289.
[15]  36. Gon?alves RM, Antunes JC, Barbosa MA. mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly (gamma-glutamic acid) polyel-ectrolyte complexes. Eur Cell Mater, 2012, 23:249-261.
[16]  29. Grefte S, Kuijpers-Jagtman AM, Torensma R, et al. Skeletal muscle fibrosis:the effect of stromal-derived factor-1α-loaded collagen scaffolds. Regen Med, 2010, 5(5):737-747.
[17]  30. Liu Z, Wang H, Wang Y, et al. The influence of chitosan hydrogel on stem cell engraftment, survival and homing in the ischemic myocardial microenvironment. Biomaterials, 2012, 33(11):3093-3106.
[18]  32. Henderson PW, Singh SP, Krijgh DD, et al. Stromal-derived factor-1 delivered via hydrogel drug-delivery vehicle accelerates wound healing in vivo. Wound Repair Regen, 2011, 19(3):420-425.
[19]  12. Lee KW, Johnson NR, Gao J, et al. Human progenitor cell recruitment via SDF-1alpha coacervate-laden PGS vascular grafts. Biomaterials, 2013, 34(38):9877-9885.
[20]  14. Blumenthal B, Poppe A, Golsong P, et al. Functional regeneration of ischemic myocardium by transplanted cells overexpressing stromal cell-derived factor-1 (SDF-1):intramyocardial injection versus scaffold-based application. Eur J Cardiothorac Surg, 2011, 40(4): e135-141.
[21]  16. Misra P, Lebeche D, Ly H, et al. Quantitation of CXCR4 expression in myocardial infarction using 99mTc-labeled SDF-1alpha. J Nucl Med, 2008, 49(6):963-969.
[22]  17. Baumann L, Prokoph S, Gabriel C, et al. A novel, biased-like SDF-1 derivative acts synergistically with starPEG-based heparin hydrogels and improves eEPC migration in vitro. J Control Release, 2012, 162(1):68-75.
[23]  18. Ko IK, Ju YM, Chen T, et al. Combined systemic and local delivery of stem cell inducing/recruiting factors for in situ tissue regeneration. FASEB J, 2012, 26(1):158-168.
[24]  20. Zhang W, Chen J, Tao J, et al. The use of type I collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials, 2013, 34(3):713-723.
[25]  21. Chen P, Tao J, Zhu S, et al. Radially oriented collagen scaffold with SDF-1 promotes osteochondral repair by facilitating cell homing. Biomaterials, 2015, 39:114-123.
[26]  22. Dashnyam K, Perez R, Lee EJ, et al. Hybrid scaffolds of gelatinsiloxane releasing stromal derived factor-1 effective for cell recruitment. J Biomed Mater Res A, 2014, 102(6):1859-1867.
[27]  23. Niu LN, Jiao K, Qi YP, et al. Intrafibrillar silicification of collagen scaffolds for sustained release of stem cell homing chemokine in hard tissue regeneration. FASEB J, 2012, 26(11):4517-4529.
[28]  24. Jin Q, Giannobile WV. SDF-1 enhances wound healing of criticalsized calvarial defects beyond self-repair capacity. PLoS One, 2014, 9(5):e97035.
[29]  25. Thieme S, Ryser M, Gentsch M, et al. Stromal cell-derived factor-1alpha-directed chemoattraction of transiently CXCR4-overexpressing bone marrow stromal cells into functionalized threedimensional biomimetic scaffolds. Tissue Eng Part C Methods, 2009, 15(4):687-696.
[30]  26. Sarkar A, Tatlidede S, Scherer SS, et al. Combination of stromal cellderived factor-1 and collagen-glycosaminoglycan scaffold delays contraction and accelerates reepithelialization of dermal wounds in wild-type mice. Wound Repair Regen, 2011, 19(1):71-79.
[31]  27. Shen W, Chen X, Chen J, et al. The effect of incorporation of exogenous stromal cell-derived factor-1 alpha within a knitted silkcollagen sponge scaffold on tendon regeneration. Biomaterials, 2010, 31(28):7239-7249.
[32]  33. Rabbany SY, Pastore J, Yamamoto M, et al. Continuous delivery of stromal cell-derived factor-1 from alginate scaffolds accelerates wound healing. Cell Transplant, 2010, 19(4):399-408.
[33]  35. Zhang F, Leong W, Su K, et al. A transduced living hyaline cartilage graft releasing transgenic stromal cell-derived factor-1 inducing endogenous stem cell homing in vivo. Tissue Eng Part A, 2013, 19(9-10):1091-1099.
[34]  2. Lau TT, Wang DA. Stromal cell-derived factor-1 (SDF-1):homing factor for engineered regenerative medicine. Expert Opin Biol Ther, 2011, 11(2):189-197.
[35]  3. Kucia M, Ratajczak J, Reca R, et al. Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury. Blood Cells Mol Dis, 2004, 32(1):52-57.
[36]  4. Peled A, Kollet O, Ponomaryov T, et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells:role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood, 2000, 95(11):3289-3296.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133