全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

撕裂半月板中软骨退变相关基因及miRNAs的表达

DOI: doi:10.7507/1002-1892.20150065

Keywords: 半月板撕裂, 骨关节炎, 软骨退变基因, miRNAs

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的研究半月板中软骨退变相关基因的表达,探讨半月板撕裂对软骨退变的潜在影响,并分析miRNAs和软骨退变的关系。 方法以2012年9月-2013年10月5例行关节镜下撕裂半月板部分切除患者自愿捐赠的半月板组织作为实验组,4例截肢患者自愿捐赠的正常半月板组织为对照组。取标本行HE染色,观察组织学改变;行实时荧光定量PCR,检测半月板中软骨退变相关基因[蛋白多糖(Aggrecan,ACAN)、Ⅹ型胶原(type X collagen,COL10A1)、基质金属蛋白酶13(matrix metalloproteinases 13,MMP-13)、CCAAT增强子结合蛋白β(CCAAT enhancer binding protein β,CEBP-β)、蛋白聚糖酶5(a disintegrin and metalloproteinase with thrombospondinmotif 5,ADAMTS-5)]以及miRNAs(miR-193b、miR-92a、miR-455-3p)表达水平。 结果组织学观察示,实验组撕裂半月板组织存在不同程度退行性改变。与对照组相比,实验组ACAN表达水平下调,COL10A1、CEBP-β、ADAMTS-5、MMP-13表达水平均上调;除ACAN、MMP-13外,其余各退变相关基因组间差异均有统计学意义(P<0.05)。实验组miR-193b、miR-92a、miR-455-3p表达水平均较对照组显著上调,比较差异亦有统计学意义(P<0.05)。 结论撕裂半月板有退变趋势,其促进软骨退变作用较正常半月板显著,miR-193b、miR-92a、miR-455-3p可能是促进软骨退变的调控因子

References

[1]  1. Samuels J, Krasnokutsky S, Abramson SB. Osteoarthritis:a tale of three tissues. Bull NYU Hosp Jt Dis, 2008, 66(3):244-250.
[2]  2. Sun Y, Mauerhan DR, Honeycutt PR, et al. Analysis of meniscal degeneration and meniscal gene expression. BMC Musculoskelet Disord, 2010, 11:19.
[3]  3. Englund M, Guermazi A, Lohmander SL. The role of the meniscus in knee osteoarthritis:a cause or consequence? Radiol Clin North Am, 2009, 47(4):703-712.
[4]  5. Englund M, Roemer FW, Hayashi D, et al. Meniscus pathology, osteoarthritis and the treatment controversy. Nat Rev Rheumatol, 2012, 8(7):412-419.
[5]  7. Laible C, Stein DA, Kiridly DN. Meniscal repair. J Am Acad Orthop Surg, 2013, 21(4):204-213.
[6]  15. HayashidaM, Okazaki K, Fukushi J. CCAAT/enhancer binding protein beta mediates expression of matrix metalloproteinase 13 in human articular chondrocytes in inflammatory arthritis. Arthritis Rheum, 2009, 60(3):708-716.
[7]  16. Hirata M, Kugimiya F, Fukai A, et al. C/EBPβ and RUNX2 cooperate to degrade cartilage with MMP-13 as the target and HIF-2α as the inducer in chondrocytes. Hum Mol Genet, 2012, 21(5):1111-1123.
[8]  6. Chang A, Moisio K, Chmiel JS, et al. Subregional effects of meniscal tears on cartilage loss over 2 years in knee osteoarthritis. Ann Rheum Dis, 2011, 70(1):74-79.
[9]  8. 李国军, 李康华, 朱勇, 等. 兔前交叉韧带断裂后外侧半月板的组织学退变. 中国组织工程研究与临床康复, 2009, 13(20):3873-3876.
[10]  12. Shen G. The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod Craniofac Res, 2005, 8(1):11-17.
[11]  13. Hirata M, Kugimiya F, Fukai A, et al. C/EBPbeta promotes transition from proliferation to hypertrophic differentiation of chondrocytes through transactivation of p57. PLoS One, 2009, 4(2):e4543.
[12]  14. Tsushima H, Okazaki K, Hayashida M. CCAAT/enhancer binding protein β regulates expression of matrix metalloproteinase-3 in arthritis. Ann Rheum Dis, 2012, 71(1):99-107.
[13]  4. Maldonado M, Nam J. The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. Biomed Res Int, 2013, 2013:284873.
[14]  9. Okubo M, Okada Y. Destruction of the articular cartilage in osteoarthritis. Clin Calcium, 2013, 23(12):1705-1713.
[15]  10. Chia SL, Sawaji Y, Burleigh A, et al. Fibroblast growth factor 2 is an intrinsic chondroprotective agent that suppresses ADAMTS-5 and delays cartilage degradation in murine osteoarthritis. Arthritis Rheum, 2009, 60(7):2019-2027.
[16]  11. Linsenmayer TF, Long F, Nurminskaya M, et al. Type X collagen and other up-regulated components of the avian hypertrophic cartilage program. Prog Nucleic Acid Res Mol Biol, 1998, 60:79-109.
[17]  17. Englund M, Guermazi A, Roemer FW, et al. Meniscal tear in knees without surgery and the development of radiographic osteoarthritis among middle-aged and elderly persons:the multicenter osteoarthritis study. Arthritis Rheum, 2009, 60(3):831-839.
[18]  18. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009, 136(4):642-655.
[19]  19. Zhang Z, Kang Y, Zhang Z, et al. Expression of microRNAs during chondrogenesis of human adipose-derived stem cells. Osteoarthritis Cartilage, 2012, 20(12):1638-1646.
[20]  20. Ukai T, Sato M, Akutsu H, et al. MicroRNA-199a-3p, microRNA-193b, and microRNA-320c are correlated to aging and regulate human cartilage metabolism. J Orthop Res, 2012, 30(12):1915-1922.
[21]  21. Swingler TE, Wheeler G, Carmont V, et al. The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum, 2012, 64(6):1909-1919.
[22]  22. BrophyRH, Rai MF, Zhang Z, et al. Molecular analysis of age and sex-related gene expression in meniscal tears with and without a concomitant anterior cruciate ligament tear. J Bone Joint Surg (Am), 2012, 94(5):385-393.
[23]  23. Henry S, Mascarenhas R, Kowalchuk D, et al. Medial meniscus tear morphology and chondral degeneration of the knee:is there a relationship? Arthroscopy, 2012, 28(8):1124-1134.e2.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133