全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

自产氧型材料在组织工程学中的研究进展

DOI: doi:10.7507/1002-1892.20150136

Keywords: 自产氧, 组织工程, 生物材料, 研究进展

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的介绍自产氧型材料作为生物材料在组织工程应用中的研究进展及前景。 方法广泛查阅国内外相关自产氧型材料研究文献,对自产氧型材料的类型、制备和在组织工程中的应用进行分析总结。 结果自产氧型材料具有理想的产氧能力和组织相容性,可应用于肝脏、心肌、胰腺等组织修复方面。 结论自产氧型材料是一种良好的生物材料,在组织工程中具有良好的应用前景

References

[1]  6. Centis V, Vermette P. Enhancing oxygen solubility using hemoglobin- and perfluorocarbon-based carriers. Front Biosci (Landmark Ed), 2009, 14:665-688.
[2]  7. Khattak SF, Chin KS, Bhatia SR, et al. Enhancing oxygen tension and cellular function in alginate cell encapsulation devices through the use of perfluorocarbons. Biotechnol Bioeng, 2007, 96(1):156-166.
[3]  11. Henkel-Honke T, Oleck M. Artificial oxygen carriers:a current review. AANA J, 2007, 75(3):205-211.
[4]  13. Waite AJ, Bonner JS, Autenrieth R. Kinetics and stoichiometry of oxygen release from solid peroxides. Environ Eng Sci, 1999, 16(3):187-199.
[5]  14. Pedraza E, Coronel MM, Fraker CA, et al. Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proc Natl Acad Sci U S A, 2012, 109(11):4245-4250.
[6]  16. Harrison BS, Eberli D, Lee SJ, et al. Oxygen producing biomaterials for tissue regeneration. Biomaterials, 2007, 28(31):4628-4634.
[7]  17. Oh SH, Ward CL, Atala A, et al. Oxygen generating scaffolds for enhancing engineered tissue survival. Biomaterials, 2009, 30(5):757-762.
[8]  18. Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life S, 2004, 61(2):192-208.
[9]  21. Lode A, Krujatz F, Brüggemeier S, et al. Green bioprinting:Fabrication of photosynthetic algae-laden hydrogel scaffolds for biotechnological and medical applications. Engineering in Life Sciences, 2015, 15(2):177-183.
[10]  24. Chin K, Khattak SF, Bhatia SR, et al. Hydrogel-perfluorocarbon composite scaffold promotes oxygen transport to immobilized cells. Biotechnol Prog, 2008, 24(2):358-366.
[11]  2. Folkman J, Hochberg M. Self-regulation of growth in three dimensions. J Exp Med, 1973, 138(4):745-753.
[12]  3. Smith MK, Peters MC, Richardson TP, et al. Locally enhanced angiogenesis promotes transplanted cell survival. Tissue Eng, 2004, 10(1-2):63-71.
[13]  4. Atala A, Bauer SB, Soker S, et al. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet, 2006, 367(9518):1241-1246.
[14]  1. Langer R, Vacanti JP. Tissue engineering. Science, 1993, 260(5110):920-926.
[15]  5. Pedraza E, Coronel MM, Fraker CA, et al. Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proc Natl Acad Sci U S A, 2012, 109(11):4245-4250.
[16]  8. Radisic M, Deen W, Langer R, et al. Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. Am J Physiol Heart Circ Physiol, 2005, 288(3):H1278-1289.
[17]  9. White JC, Stoppel WL, Roberts SC, et al. Addition of perfluorocarbons to alginate hydrogels significantly impacts molecular transport and fracture stress. J Biomed Mater Research Part A, 2013, 101(2):438-446.
[18]  10. Seifu DG, Isimjan TT, Mequanint K. Tissue engineering scaffolds containing embedded fluorinated-zeolite oxygen vectors. Acta Biomater, 2011, 7(10):3670-3678.
[19]  12. Northup A, Cassidy D. Calcium peroxide (CaO2) for use in modified Fenton chemistry. J Hazard Mater, 2008, 152(3):1164-1170.
[20]  15. Borden RC, Goin RT, Kao CM. Control of BTEX migration using a biologically enhanced permeable barrier. Groundwater Monitoring Remediation, 1997, 17(1):70-80.
[21]  19. Bryan N, Ahswin H, Smart N, et al. Reactive oxygen species (ROS)-a family of fate deciding molecules pivotal in constructive inflammation andwound healing. Eur Cell Mater, 2012, 24:249-265.
[22]  20. Bloch K, Papismedov E, Yavriyants K, et al. Photosynthetic oxygen generator for bioartificial pancreas. Tissue Eng, 2006, 12(2):337-344.
[23]  22. Hopfner U, Schenck TL, Chávez MN, et al. Development of photosynthetic biomaterials for in vitro tissue engineering. Acta Biomater, 2014, 10(6):2712-2717.
[24]  23. Schenck TL, Hopfner U, Chávez MN, et al. Photosynthetic biomaterials:A pathway towards autotrophic tissue engineering. Acta Biomater, 2015, 15:39-47.
[25]  25. Li Z, Guo X, Guan J. An oxygen release system to augment cardiac progenitor cell survival and differentiation under hypoxic condition. Biomaterials, 2012, 33(25):5914-5923.
[26]  26. Schneider N, Lejeune JP, Deby C, et al. Viability of equine articular chondrocytes in alginate beads exposed to different oxygen tensions. Vet J, 2004, 168(2):167-173.
[27]  27. Ward CL, Corona BT, Yoo JJ, et al. Oxygen generating biomaterials preserve skeletal muscle homeostasis under hypoxic and ischemic conditions. PLoS One, 2013, 8(8):e72485.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133