全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

尿液源性干细胞的研究进展

DOI: doi:10.7507/1002-1892.20150078

Keywords: 尿液源性干细胞, 分离培养, 生物学特性, 组织工程, 种子细胞

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的对尿液源性干细胞(urine-derived stem cells,USCs)的分离培养、生物学特性及其在组织工程研究方面的应用进行综述。 方法广泛查阅近年来国内外USCs相关文献,进行综合分析和归纳总结。 结果目前用于分离筛选USCs的方法主要为贴壁法。USCs是一类具有较强增殖活性和多向分化潜能的成体干细胞,具有MSCs的各种生物学特性。结合使用适宜的生物支架材料和适当的生物活性因子,USCs可作为良好的种子细胞来源应用于组织器官修复重建。 结论USCs的研究前景广阔,其来源、个体差异性及其治疗价值等尚待深入研究

References

[1]  1. Colombo JS, Carley A, Fleming GJ, et al. Osteogenic potential of bone marrow stromal cells on smooth, roughened, and tricalcium phosphate-modified titanium alloy surfaces. Int J Oral Maxillofac Implants, 2012, 27(5):1029-1042.
[2]  3. Mohammadi R, Azizi S, Delirezh N, et al. The use of undifferentiated bone marrow stromal cells for sciatic nerve regeneration in rats. Int J Oral Maxillofac Surg, 2012, 41(5):650-656.
[3]  4. Bharadwaj S, Liu G, Shi Y, et al. Multipotential differentiation of human urine-derived stem cells:potential for therapeutic applications in urology. Stem Cells, 2013, 31(9):1840-1856.
[4]  6. 汪泱, 关俊杰, 邓志锋, 等. 尿液间充质干细胞的提取及扩增培养方法和应用. 中国:CN201210470118.1. 2013-02-13.
[5]  9. Bharadwaj S, Liu G, Shi Y, et al. Characterization of urine-derived stem cells obtained from upper urinary tract for use in cell-based urological tissue engineering. Tissue Eng Part A, 2011, 17(15-16):2123-2132.
[6]  24. Lin HK, Godiwalla SY, Palmer B, et al. Understanding roles of porcine small intestinal submucosa in urinary bladder regeneration:identification of variable regenerative characteristics of small intestinal submucosa. Tissue Eng Part B Rev, 2014, 20(1):73-83.
[7]  25. Luo JC, Chen W, Chen XH, et al. A multi-step method for preparation of porcine small intestinal submucosa (SIS). Biomaterials, 2011, 32(3):706-713.
[8]  33. Hou S, Xu Q, Tian W, et al. The repair of brain lesion by implantation of hyaluronic acid hydrogels modified with laminin. J Neurosci Methods, 2005, 148(1):60-70.
[9]  34. Fu Y, Guan J, Guo S, et al. Human urine-derived stem cells in combination with polycaprolactone/gelatin nanofibrous membranes enhance wound healing by promoting angiogenesis. J Transl Med,.
[10]  7. Atala A, Bauer SB, Soker S, et al. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet, 2006, 367(9518):1241-1246.
[11]  8. Lang R, Liu G, Shi Y, et al. Self-renewal and differentiation capacity of urine-derived stem cells after urine preservation for 24 hours. PLoS One, 2013, 8(1):e53980.
[12]  10. Chun SY, Kim HT, Lee JS, et al. Characterization of urine-derived cells from upper urinary tract in patients with bladder cancer. Urology, 2012, 79(5):1186.e1-7.
[13]  11. Sutherland GR, Bain AD. Culture of cells from the urine of newborn children. Nature, 1972, 239(5369):231.
[14]  12. Crandall L, Lalande M. Is urine the next source of stem cells? Regen Med, 2013, 8(3):235-236.
[15]  13. Zhang D, Wei G, Li P, et al. Urine-derived stem cells:A novel and versatile progenitor source for cell-based therapy and regenerative medicine. Genes Dis, 2014, 1(1):8-17.
[16]  16. Guan JJ, Niu X, Gong FX, et al. Biological characteristics of human-urine-derived stem cells:potential for cell-based therapy in neurology. Tissue Eng Part A, 2014, 20(13-14):1794-1806.
[17]  17. Benda C, Zhou T, Wang X, et al. Urine as a source of stem cells. Adv Biochem Eng Biotechnol, 2013, 129:19-32.
[18]  18. Wu S, Wang Z, Bharadwaj S, et al. Implantation of autologous urine derived stem cells expressing vascular endothelial growth factor for potential use in genitourinary reconstruction. J Urol, 2011, 186(2):640-647.
[19]  20. Wu S, Liu Y, Bharadwaj S, et al. Human urine-derived stem cells seeded in a modified 3D porous small intestinal submucosa scaffold for urethral tissue engineering. Biomaterials, 2011, 32(5):1317-1326.
[20]  21. Liu G, Wang X, Sun X, et al. The effect of urine-derived stem cells expressing VEGF loaded in collagen hydrogels on myogenesis and innervation following after subcutaneous implantation in nude mice. Biomaterials, 2013, 34(34):8617-8629.
[21]  22. Liu G, Pareta RA, Wu R, et al. Skeletal myogenic differentiation of urine-derived stem cells and angiogenesis using microbeads loaded with growth factors. Biomaterials, 2013, 34(4):1311-1326.
[22]  23. Pei M, Li J, Zhang Y, et al. Expansion on a matrix deposited by nonchondrogenic urine stem cells strengthens the chondrogenic capacity of repeated-passage bone marrow stromal cells. Cell Tissue Res, 2014, 356(2):391-403.
[23]  2. Salomone R, Bento RF, Costa HJ, et al. Bone marrow stem cells in facial nerve regeneration from isolated stumps. Muscle Nerve, 2013, 48(3):423-429.
[24]  5. Zhang Y, Mcneill E, Tian H, et al. Urine derived cells are a potential source for urological tissue reconstruction. J Urol, 2008, 180(5):2226-2233.
[25]  14. Qin D, Long T, Deng J, et al. Urine-derived stem cells for potential use in bladder repair. Stem Cell Res Ther, 2014, 5(3):69.
[26]  15. Racusen LC, Fivush BA, Andersson H, et al. Culture of renal tubular cells from the urine of patients with nephropathic cystinosis. J Am Soc Nephrol, 1991, 1(8):1028-1033.
[27]  19. 赵阳, 张明, 王忠, 等. 组织工程支架材料在膀胱修复中的应用进展. 组织工程与重建外科杂志, 2013, 9(5):289-291.
[28]  26. Zhang Y, Kropp BP, Lin HK, et al. Bladder regeneration with cell-seeded small intestinal submucosa. Tissue Eng, 2004, 10(1-2):181-187.
[29]  27. Bodin A, Bharadwaj S, Wu S, et al. Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials, 2010, 31(34):8889-8901.
[30]  28. 张帅, 赵维明, 修有成. 压力性尿失禁干细胞治疗的新进展. 中华临床医师杂志(电子版), 2013, 7(22):10290-10293.
[31]  29. 李颖, 董武. 干细胞治疗女性压力性尿失禁研究进展. 中国实用妇科与产科杂志, 2011, 27(5):398-400.
[32]  30. Deasy BM, Feduska JM, Payne TR, et al. Effect of VEGF on the regenerative capacity of muscle stem cells in dystrophic skeletal muscle. Mol Ther, 2009, 17(10):1788-1798.
[33]  31. Gnavi S, di Blasio L, Tonda-Turo C, et al. Gelatin-based hydrogel for vascular endothelial growth factor release in peripheral nerve tissue engineering. J Tissue Eng Regen Med, 2014.[Epub ahead of print].
[34]  32. Nikolaev SI, Gallyamov AR, Mamin GV, et al. Poly(epsilon-caprolactone) nerve conduit and local delivery of vegf and fgf2 genes stimulate neuroregeneration. Bull Exp Biol Med, 2014, 157(1):155-158.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133