6. Zhang F, Sodroski C, Cha H, et al. Infection of hepatocytes with HCV increases cell surface levels of heparan sulfate proteoglycans, uptake of cholesterol and lipoprotein, and virus entry by up-regulating SMAD6 and SMAD7. Gastroenterology, 2017, 152(1): 257-270. e7.
[2]
8. Li JP, Kusche-Gullberg M. Heparan Sulfate: Biosynthesis, Structure, and Function. Int Rev Cell Mol Biol, 2016, 325: 215-273.
[3]
28. Woodruff MA, Rath SN, Susanto E, et al. Sustained release and osteogenic potential of heparan sulfate-doped fibrin glue scaffolds within a rat cranial model. J Mol Hist, 2007, 38(5): 425-433.
[4]
29. Rai B, Chatterjea A, Lim ZX, et al. Repair of segmental ulna defects using a β-TCP implant in combination with a heparan sulfate glycosaminoglycan variant. Acta Biomater, 2015, 28: 193-204.
[5]
33. Lowe DA, Lepori-Bui N, Fomin PV, et al. Deficiency in perlecan/HSPG2 during bone development enhances osteogenesis and decreases quality of adult bone in mice. Calcif Tissue Int, 2014, 95(1): 29-38.
[6]
34. Ratzka A, Kalus I, Moser M, et al. Redundant function of the heparan sulfate 6-O-endosulfatases Sulf1 and Sulf2 during skeletal development. Dev Dyn, 2008, 237(2): 339-353.
[7]
37. Ellman MB, Yan D, Ahmadinia K, et al. Fibroblast growth factor control of cartilage homeostasis. J Cell Biochem, 2013, 114(4): 735-742.
[8]
21. Saijo M, Kitazawa R, Nakajima M, et al. Heparanase mRNA expression during fracture repair in mice. Histochem Cell Biol, 2003, 120(6): 493-503.
31. Wang B, Lai X, Price C, et al. Perlecan-containing pericellular matrix regulates solute transport and mechanosensing within the osteocyte lacunar-canalicular system. J Bone Miner Res, 2014, 29(4): 878-891.
[11]
32. Whitelock JM, Melrose J, Iozzo RV. Diverse cell signaling events modulated by perlecan. Biochemistry, 2008, 47(43): 11174-11183.
[12]
38. Wu ZL, Zhang L, Yabe T, et al. The Involvement of Heparan Sulfate (HS) in FGF1/HS/FGFR1 Signaling Complex. J Biol Chem, 2003, 278(19): 17121-17129.
[13]
41. Kim HJ, Kim JH, Bae SC, et al. The protein kinase C pathway plays a central role in the fibroblast growth factor-stimulated expression and transactivation activity of Runx2. J Biol Chem, 2003, 278(1): 319-326.
[14]
1. Song SJ, Hutmacher D, Nurcombe V, et al. Temporal expression of proteoglycans in the rat limb during bone healing. Gene, 2006, 379: 92-100.
[15]
2. Fu L, Suflita M, Linhardt RJ. Bioengineered heparins and heparan sulfates. Adv Drug Deliv Rev, 2016, 97: 237-249.
[16]
3. Schultz V, Suflita M, Liu X, et al. Heparan sulfate domains required for fibroblast growth factor 1 and 2 signaling through fibroblast growth factor receptor 1c. J Biol Chem, 2017, 292(6): 2495-2509.
[17]
4. Esko JD, Selleck SB. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem, 2002, 71: 435-471.
[18]
5. Rai B, Nurcombe V, Cool SM. Heparan sulfate-based treatments for regenerative medicine. Crit Rev Eukaryot Gene Expr, 2011, 21(1): 1-12.
[19]
7. Onishi A, St Ange K, Dordick JS, et al. Heparin and anticoagulation. Front Biosci (Landmark Ed), 2016, 21: 1372-1392.
[20]
9. Kamhi E, Joo EJ, Dordick JS, et al. Glycosaminoglycans in infectious disease. Biol Rev Camb Philos Soc, 2013, 88(4): 928-943.
11. Thompson WR, Modla S, Grindel BJ, et al. Perlecan/Hspg2 deficiency alters the pericellular space of the lacunocanalicular system surrounding osteocytic processes in cortical bone. J Bone Miner Res, 2011, 26(3): 618-629.
[23]
12. Dombrowski C, Song SJ, Chuan P, et al. Heparan sulfate mediates the proliferation and differentiation of rat mesenchymal stem cells. Stem Cells Dev, 2009, 18(4): 661-670.
[24]
13. Haupt LM, Murali S, Mun FK, et al. The heparan sulfate proteoglycan (HSPG) glypican-3 mediates commitment of MC3T3-E1 cells toward osteogenesis. J Cell Physiol, 2009, 220(3): 780-791.
[25]
14. Moussa FM, Hisijara IA, Sondag GR, et al. Osteoactivin promotes osteoblast adhesion through HSPG and αvβ1 integrin. J Cell Biochem, 2014, 115(7): 1243-1253.
[26]
15. Qin X, Jiang Q, Matsuo Y, et al. Cbfb regulates bone development by stabilizing Runx family proteins. J Bone Miner Res, 2015, 30(4): 706-714.
[27]
17. Jackson RA, Murali S, van Wijnen AJ, et al. Heparan sulfate regulates the anabolic activity of MC3T3-E1 preosteoblast cells by induction of Runx2. J Cell Physiol, 2007, 210(1): 38-50.
[28]
18. Manton KJ, Sadasivam M, Cool SM, et al. Bone-specific heparan sulfates induce osteoblast growth arrest and downregulation of retinoblastoma protein. J Cell Physiol, 2006, 209(1): 219-229.
[29]
19. Ruan J, Trotter TN, Nan L, et al. Heparanase inhibits osteoblastogenesis and shifts bone marrow progenitor cell fate in myeloma bone disease. Bone, 2013, 57(1): 10-17.
[30]
20. Han Q, Liu F, Zhou Y. Increased expression of heparanase in osteogenic differentiation of rat marrow stromal cells. Exp Ther Med, 2013, 5(6): 1697-1700.
[31]
22. Chuang CY, Lord MS, Melrose J, et al. Heparan sulfate dependent signaling of fibroblast growth factor (FGF) 18 by chondrocyte-derived perlecan. Biochemistry, 2010, 49(26): 5524-5532.
[32]
23. Manton KJ, Leong DF, Cool SM, et al. Disruption of heparan and chondroitin sulfate signaling enhances mesenchymal stem cell-derived osteogenic differentiation via bone morphogenetic protein signaling pathways. Stem Cells, 2007, 25(11): 2845-2854.
[33]
24. Genander M, Cook PJ, Ramsk?ld D, et al. BMP signaling and its pSMAD1/5 target genes differentially regulate hair follicle stem cell lineages. Cell Stem Cell, 2014, 15(5): 619-633.
[34]
25. Jackson RA, McDonald MM, Nurcombe V, et al. The use of heparan sulfate to augment fracture repair in a rat fracture model. J Orthop Res, 2006, 24(4): 636-644.
[35]
26. Lafont J, Blanquaert F, Colombier ML, et al. Kinetic study of early regenerative effects of RGTA11, a heparan sulfate mimetic, in rat craniotomy defects. Calcif Tissue Int, 2004, 75(6): 517-525.
[36]
27. Gdalevitch M, Kasaai B, Alam N, et al. The effect of heparan sulfate application on bone formation during distraction osteogenesis. PLoS One, 2013, 8(2): e56790.
[37]
35. Jackson RA, Nurcombe V, Cool SM. Coordinated fibroblast growth factor and heparan sulfate regulation of osteogenesis. Gene, 2006, 379: 79-91.
[38]
36. Schlessinger J. Cell Signaling by Receptor Tyrosine Kinases. Cell, 2000, 103(2): 211-225.
[39]
16. Smith PN, Freeman C, Yu D, et al. Heparanase in primary human osteoblasts. J Othorp Res, 2010, 28(10): 1315-1322.
[40]
39. Debiais F, Lemonnier J, Hay E, et al. Fibroblast growth factor-2 increases N-cadherin expression through protein kinase C and Src-kinase pathways in human calvaria osteoblasts. J Cell Biochem, 2001, 81(1): 68-81.
44. Wolski H, Drews K, Bogacz A, et al. The RANKL/RANK/OPG signal trail: significance of genetic polymorphisms in the etiology of postmenopausal osteoporosis. Ginekol Pol, 2016, 87(5): 347-352.
[45]
45. Li M, Yang S, Xu D. Heparan sulfate regulates the structure and function of osteoprotegerin in osteoclastogenesis. J Biol Chem, 2016, 291(46): 24160-24171.
[46]
46. Bastami F, Paknejad Z, Jafari M, et al. Fabrication of a three-dimensional β-tricalcium-phosphate/gelatin containing chitosan-based nanoparticles for sustained release of bone morphogenetic protein-2: Implication for bone tissue engineering. Mater Sci Eng C Mater Biol Appl, 2017, 72: 481-491.
[47]
47. Bramono DS, Murali S, Rai B, et al. Bone marrow-derived heparan sulfate potentiates the osteogenic activity of bone morphogenetic protein-2 (BMP-2). Bone, 2012, 50(4): 954-964.
[48]
48. Murali S, Rai B, Dombrowski C, et al. Affinity-selected heparan sulfate for bone repair. Biomaterials, 2013, 34(22): 5594-5605.