12. Rouwkema J, Boer JD, van Blitterswijk CA. Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng, 2006, 12(9):2685-2693.
[2]
5. Levenberg S, Rouwkema J, Macdonald M, et al. Engineering vascularized skeletal muscle tissue. Nat Biotechnol, 2005, 23(7):879-884.
[3]
6. Rouwkema J, de Boer J, van Blitterswijk CA. Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng, 2006, 12(9):2685-2693.
[4]
8. Sekiya S, Shimizu T, Yamato M, et al. Bioengineered cardiac cell sheet grafts have intrinsic angiogenic potential. Biochem Biophys Res Commun, 2006, 341(2):573-582.
[5]
19. 赵洁. 基于细胞膜片技术构建小口径组织工程血管. 西安:西北大学, 2010.
[6]
20. Ohashi K, Yokoyama T, Yamato M, et al. Engineering functional two- and three-dimensional liver systems in vivo using hepatic tissue sheets. Nat Med, 2007, 13(7):880-885.
[7]
23. Zhou Y, Chen F, Ho ST, et al. Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts. Biomaterials, 2007, 28(5):814-824.
[8]
25. Gao Z, Chen F, Zhang J, et al. Vitalisation of tubular coral scaffolds with cell sheets for regeneration of long bones:a preliminary study in nude mice. Br J Oral Maxillofac Surg, 2009, 47(2):116-122.
[9]
1. Nomi M, Atala A, Coppi PD, et al. Principals of neovascularization for tissue engineering. Mol Aspects Med, 2002, 23(6):463-483.
[10]
2. Yu H, VandeVord PJ, Mao L, et al. Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization. Biomaterials, 2009, 30(4):508-517.
[11]
3. Cassell OC, Hofer SO, Morrison WA, et al. Vascularisation of tissue-engineered grafts:the regulation of angiogenesis in reconstructive surgery and in disease states. Br J Plast Surg, 2002, 55(8):603-610.
[12]
4. 张蓉. 基于细胞膜片技术构建血管化组织工程骨的实验研究. 西安:第四军医大学, 2012.
[13]
7. Tremblay PL, Hudon V, Berthod F, et al. Inosculation of tissue-engineered capillaries with the host's vasculature in a reconstructed skin transplanted on mice. Am J Transplant, 2005, 5(5):1002-1010.
[14]
9. Sekine H, Shimizu T, Hobo K, et al. Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation, 2008, 118(14 suppl):S145-S152.
[15]
10. Fujioka N, Morimoto Y, Takeuchi K, et al. Difference in infrared spectra from cultured cells dependent on cell-harvesting method. Appl Spectrosc, 2003, 57(2):241-243.
[16]
11. Hutmacher DW, Schantz JT, Lam CX, et al. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med, 2007, 1(4):245-260.
[17]
13. Verseijden F, Posthumus-van Sluijs SJ, Farrell E, et al. Prevascular structures promote vascularization in engineered human adipose tissue constructs upon implantation. Cell Transplant, 2010, 19(8):1007-1020.
[18]
14. Elloumi-Hannachi I, Yamato M, Okano T. Cell sheet engineering:a unique nanotechnology for scaffold-free tissue reconstruction with clinical applications in regenerative medicine. J Intern Med, 2010, 267(1):54-70.
[19]
15. Ohki T, Yamato M, Ota M, et al. Prevention of esophageal stricture after endoscopic submucosal dissection using tissue-engineered cell sheets. Gastroenterology, 2012, 143(3):582-588.e1-2.
[20]
16. Iwata T, Yamato M, Zhang Z, et al. Validation of human periodontal ligament-derived cells as a reliable source for cytotherapeutic use. J Clin Periodontol, 2010, 37(12):1088-1099.
[21]
17. Sawa Y, Miyagawa S, Sakaguchi T, et al. Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM:report of a case. Surg Today, 2012, 42(2):181-184.
[22]
18. Miyahara Y, Nagaya N, Kataoka M, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med, 2006, 12(4):459-465.
[23]
21. Asakawa N, Shimizu T, Tsuda Y, et al. Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering. Biomaterials, 2010, 31(14):3903-3909.
[24]
22. Sasagawa T, Shimizu T, Sekiya S, et al. Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology. Biomaterials, 2010, 31(7):1646-1654.
[25]
24. Chen F, Zhou Y, Barnabas ST, et al. Engineering tubular bone constructs. J Biomech, 2007, 40 Suppl 1:S73-S79.
27. Syed-Picard FN, Larkin LM, Shaw CM, et al. Three-dimensional engineered bone from bone marrow stromal cells and their autogenous extracellular matrix. Tissue Eng Part A, 2008, 15(1):187-195.
[28]
28. Ma D, Ren L, Liu Y, et al. Engineering scaffold-free bone tissue using bone marrow stromal cell sheets. J Orthop Res, 2010, 28(5):697-702.
[29]
29. Ma D, Ren L, Yao H, et al. Locally injection of cell sheet fragments enhances new bone formation in mandibular distraction osteogenesis:a rabbit model. J Orthop Res, 2013, 31(7):1082-1088.
[30]
30. Ma D, Yao H, Tian W, et al. Enhancing bone formation by transplantation of a scaffold-free tissue-engineered periosteum in a rabbit model. Clin Oral Implants Res, 2011, 22(10):1193-1199.
32. Ren L, Kang Y, Browne C, et al. Fabrication, vascularization and osteogenic properties of a novel synthetic biomimetic induced membrane for the treatment of large bone defects. Bone, 2014, 64:173-182.
[33]
33. Kang Y, Ren L, Yang YP. Engineering vascularized bone grafts by integrating a biomimetic periosteum and β-TCP scaffold. ACS Appl Mater Interfaces, 2014, 6 (12):9622-9633.
[34]
34. Mendes LF, Pirraco RP, Szymczyk W, et al. Perivascular-like cells contribute to the stability of the vascular network of osteogenic tissue formed from cell sheet-based constructs. PLoS One, 2012, 7(7):e41051.
[35]
35. Zhang R, Gao Z, Geng W, et al. Engineering vascularized bone graft with osteogenic and angiogenic lineage differentiated bone marrow mesenchymal stem cells. Artif Organs, 2012, 36(12):1036-1046.