全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

细胞膜片技术在构建工程化血管化组织中的应用进?展

DOI: doi:10.7507/1002-1892.20150077

Keywords: 血管化, 细胞膜片技术, BMSCs, 内皮细胞, 组织工程

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的总结细胞膜片技术在构建工程化血管化组织中的应用进展。 方法查阅近年来国内外细胞膜片技术及工程化血管化组织构建的相关研究文献,进行综合分析及归纳总结。 结果构建血管化组织方法较多,而细胞膜片技术在构建血管化组织中具有巨大潜力,利用该技术实现工程化组织的预血管化成为近年研究热点。将内皮细胞与其他细胞形成的细胞膜片复合,内皮细胞能够在膜片上形成三维血管化网络结构和微血管空腔,有利于移植组织内功能性血管网的建立。 结论利用细胞膜片技术构建工程化血管化组织,是具有前景的一种策略,目前仍在进一步研究中

References

[1]  12. Rouwkema J, Boer JD, van Blitterswijk CA. Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng, 2006, 12(9):2685-2693.
[2]  5. Levenberg S, Rouwkema J, Macdonald M, et al. Engineering vascularized skeletal muscle tissue. Nat Biotechnol, 2005, 23(7):879-884.
[3]  6. Rouwkema J, de Boer J, van Blitterswijk CA. Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng, 2006, 12(9):2685-2693.
[4]  8. Sekiya S, Shimizu T, Yamato M, et al. Bioengineered cardiac cell sheet grafts have intrinsic angiogenic potential. Biochem Biophys Res Commun, 2006, 341(2):573-582.
[5]  19. 赵洁. 基于细胞膜片技术构建小口径组织工程血管. 西安:西北大学, 2010.
[6]  20. Ohashi K, Yokoyama T, Yamato M, et al. Engineering functional two- and three-dimensional liver systems in vivo using hepatic tissue sheets. Nat Med, 2007, 13(7):880-885.
[7]  23. Zhou Y, Chen F, Ho ST, et al. Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts. Biomaterials, 2007, 28(5):814-824.
[8]  25. Gao Z, Chen F, Zhang J, et al. Vitalisation of tubular coral scaffolds with cell sheets for regeneration of long bones:a preliminary study in nude mice. Br J Oral Maxillofac Surg, 2009, 47(2):116-122.
[9]  1. Nomi M, Atala A, Coppi PD, et al. Principals of neovascularization for tissue engineering. Mol Aspects Med, 2002, 23(6):463-483.
[10]  2. Yu H, VandeVord PJ, Mao L, et al. Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization. Biomaterials, 2009, 30(4):508-517.
[11]  3. Cassell OC, Hofer SO, Morrison WA, et al. Vascularisation of tissue-engineered grafts:the regulation of angiogenesis in reconstructive surgery and in disease states. Br J Plast Surg, 2002, 55(8):603-610.
[12]  4. 张蓉. 基于细胞膜片技术构建血管化组织工程骨的实验研究. 西安:第四军医大学, 2012.
[13]  7. Tremblay PL, Hudon V, Berthod F, et al. Inosculation of tissue-engineered capillaries with the host's vasculature in a reconstructed skin transplanted on mice. Am J Transplant, 2005, 5(5):1002-1010.
[14]  9. Sekine H, Shimizu T, Hobo K, et al. Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation, 2008, 118(14 suppl):S145-S152.
[15]  10. Fujioka N, Morimoto Y, Takeuchi K, et al. Difference in infrared spectra from cultured cells dependent on cell-harvesting method. Appl Spectrosc, 2003, 57(2):241-243.
[16]  11. Hutmacher DW, Schantz JT, Lam CX, et al. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med, 2007, 1(4):245-260.
[17]  13. Verseijden F, Posthumus-van Sluijs SJ, Farrell E, et al. Prevascular structures promote vascularization in engineered human adipose tissue constructs upon implantation. Cell Transplant, 2010, 19(8):1007-1020.
[18]  14. Elloumi-Hannachi I, Yamato M, Okano T. Cell sheet engineering:a unique nanotechnology for scaffold-free tissue reconstruction with clinical applications in regenerative medicine. J Intern Med, 2010, 267(1):54-70.
[19]  15. Ohki T, Yamato M, Ota M, et al. Prevention of esophageal stricture after endoscopic submucosal dissection using tissue-engineered cell sheets. Gastroenterology, 2012, 143(3):582-588.e1-2.
[20]  16. Iwata T, Yamato M, Zhang Z, et al. Validation of human periodontal ligament-derived cells as a reliable source for cytotherapeutic use. J Clin Periodontol, 2010, 37(12):1088-1099.
[21]  17. Sawa Y, Miyagawa S, Sakaguchi T, et al. Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM:report of a case. Surg Today, 2012, 42(2):181-184.
[22]  18. Miyahara Y, Nagaya N, Kataoka M, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med, 2006, 12(4):459-465.
[23]  21. Asakawa N, Shimizu T, Tsuda Y, et al. Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering. Biomaterials, 2010, 31(14):3903-3909.
[24]  22. Sasagawa T, Shimizu T, Sekiya S, et al. Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology. Biomaterials, 2010, 31(7):1646-1654.
[25]  24. Chen F, Zhou Y, Barnabas ST, et al. Engineering tubular bone constructs. J Biomech, 2007, 40 Suppl 1:S73-S79.
[26]  26. 黄辉, 张森林, 刘向辉, 等. 细胞-膜片复合珊瑚支架修复兔颅骨极限缺损的实验研究. 口腔颌面外科杂志, 2011, 21(4):256-260.
[27]  27. Syed-Picard FN, Larkin LM, Shaw CM, et al. Three-dimensional engineered bone from bone marrow stromal cells and their autogenous extracellular matrix. Tissue Eng Part A, 2008, 15(1):187-195.
[28]  28. Ma D, Ren L, Liu Y, et al. Engineering scaffold-free bone tissue using bone marrow stromal cell sheets. J Orthop Res, 2010, 28(5):697-702.
[29]  29. Ma D, Ren L, Yao H, et al. Locally injection of cell sheet fragments enhances new bone formation in mandibular distraction osteogenesis:a rabbit model. J Orthop Res, 2013, 31(7):1082-1088.
[30]  30. Ma D, Yao H, Tian W, et al. Enhancing bone formation by transplantation of a scaffold-free tissue-engineered periosteum in a rabbit model. Clin Oral Implants Res, 2011, 22(10):1193-1199.
[31]  31. 任利玲, 刘斌, 马东洋, 等. 预血管化细胞膜片的构建. 中国细胞生物学学报, 2014, 36(3):338-342.
[32]  32. Ren L, Kang Y, Browne C, et al. Fabrication, vascularization and osteogenic properties of a novel synthetic biomimetic induced membrane for the treatment of large bone defects. Bone, 2014, 64:173-182.
[33]  33. Kang Y, Ren L, Yang YP. Engineering vascularized bone grafts by integrating a biomimetic periosteum and β-TCP scaffold. ACS Appl Mater Interfaces, 2014, 6 (12):9622-9633.
[34]  34. Mendes LF, Pirraco RP, Szymczyk W, et al. Perivascular-like cells contribute to the stability of the vascular network of osteogenic tissue formed from cell sheet-based constructs. PLoS One, 2012, 7(7):e41051.
[35]  35. Zhang R, Gao Z, Geng W, et al. Engineering vascularized bone graft with osteogenic and angiogenic lineage differentiated bone marrow mesenchymal stem cells. Artif Organs, 2012, 36(12):1036-1046.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133