全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

交联透明质酸钠凝胶中交联剂残留量的检测方法研究

DOI: doi:10.7507/1002-1892.20150132

Keywords: 交联透明质酸钠, 1,4丁二醇二缩水甘油醚, 残留量, 荧光分光光度法, 交联剂

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的建立一种准确的检测交联透明质酸钠凝胶中交联剂1,4丁二醇二缩水甘油醚(1,4-butanediol diglycidyl ether,BDDE)残留量的方法,为产品的质量控制提供科学的检测方法。 方法采用气相色谱法考察BDDE的热稳定性,同时利用荧光分光光度法测定透明质酸钠凝胶中BDDE的残留量。通过分析荧光法检测BDDE残留量的影响因素(透明质酸酶及BDDE稳定性)改良荧光法。将透明质酸酶添加到BDDE标准溶液中,测定交联透明质酸钠凝胶中BDDE残留量。 结果传统荧光法检测示,BDDE残留量与荧光值呈线性相关性,线性方程为y=14.102x+1.103,R2=0.999 8。BDDE具有热不稳定性,随温度上升与时间延长均会发生分解。荧光法检测透明质酸酶和交联透明质酸钠凝胶酶解液均产生荧光值。经改良后的荧光法得到新的标准曲线,y=14.027x+7.062,R2=0.999 9。 结论荧光检测法是一种简便、快速、准确测定交联透明质酸钠凝胶中BDDE残留量的方法。由于BDDE具有热不稳定性,使用该方法时需严格控制各步骤温度,排除温度对检测结果的影响。同时采用传统荧光法检测凝胶中交联剂BDDE的残留量时需对凝胶进行酶解,而引入的透明质酸酶对检测结果存在较大影响,可将透明质酸酶添加到BDDE标准溶液中,以扣除其对检测结果的影响

References

[1]  10. Fakharia A, Berkland C. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomaterialia, 2013, 9(7):7081-7092.
[2]  13. De Boulle K, Glogau R, Kono T, et al. A review of the metabolism of 1,4-butanediol diglycidyl ether-crosslinked hyaluronic acid dermal fillers. Dermatol Surg, 2013, 39(12):1758-1766.
[3]  14. Yeom J, Bhang SH, Kim BS, et al. Effect of cross-linking reagents for hyaluronic acid hydrogel dermal fillers on tissue augmentation and regeneration. Bioconjug Chem, 2010, 21(2):240-247.
[4]  15. 张健, 奚宏伟, 朱彬,等. 荧光分光光度法检测交联透明质酸中交联剂残留量. 生物医学工程学进展, 2011, 32(4):198-200.
[5]  16. 冯海, 张格, 徐玉芸, 等. 荧光分光光度法测定交联透明质酸凝胶中交联剂的残留量. 药物分析杂志, 2013, 32(4):654-657.
[6]  17. 唐燕发, 许建和, 叶勤. 分光光度法测定环氧化物浓度与环氧化物水解酶活性. 分析科学学报, 2002, 18(2):142-144.
[7]  18. Lai JY. Relationship between structure and cytocompatibility of divinyl sulfone cross-linked hyaluronic acid. Carbohydr Polym, 2014, 101:203-212.
[8]  19. Ibrahim S, Kang QK, Ramamurthi A. The impact of hyaluronic acid oligomer content on physical, mechanical, and biologic properties of divinyl sulfone-crosslinked hyaluronic acid hydrogels. J Biomed Mater Res A, 2010, 94(2):355-370.
[9]  20. Credi C, Biella S, De Marco C, et al. Fine tuning and measurement of mechanical properties of crosslinked hyaluronic acid hydrogels as biomimetic scaffold coating in regenerative medicine. J Mech Behav Biomed Mater, 2014, 29:309-316.
[10]  21. La Gatta A, Schiraldi C, Papa A, et al. Hyaluronan scaffolds via diglycidyl ether crosslinking:toward improvements in composition and performance. Carbohydr Polym, 2013, 96(2):536-544.
[11]  1. Prestwich GD, Marecak DM, MJF, et al. Controlled chemical modification of hyaluronic acid:synthesis, applications, and biodegradation of hydrazide derivatives. J Contr Rel, 1998, 53(1-3):93-103.
[12]  2. Laurent TC, Fraser JR. Hyaluronan. FASEB J, 1992, 6(7):2397-2404.
[13]  3. Xian X, Jha AK, Harrington DA, et al. Hyaluronic acid-based hydrogels:from a natural polysaccharide to complex networks. Soft Matter, 2012, 8(12):3280-3294.
[14]  4. Burdick JA, Presteich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mat, 2011, 23(12):H41-56.
[15]  5. Edsman K, Nord LI, Ohrlund A, et al. Gel properties of hyaluronic acid dermal fillers. Dermatol Surg, 2012, 38(7 Pt 2):1170-1179.
[16]  6. Kablik J, Monheit GD, Yu L, et al. Comparative physical properties of hyaluronic acid dermal fillers. Dermatol Surg, 2009, 35 Suppl 1:302-312.
[17]  7. Bencherif SA, Srinivasan A, Horkay F, et al. Influence of the degree of methacrylation on hyaluronic acid hydrogels properties. Biomaterials, 2008, 29(12):1739-1749.
[18]  8. Tomihata K, Ikada Y. Crosslinking of hyaluronic acid with water-soluble carbodiimide. J Biomed Mater Res, 1997, 37(2):243-251.
[19]  9. 米鹏程, 王伯初, 冯薇, 等. 二乙烯基砜交联透明质酸钠凝胶的制备及其生物相容性. 中国组织工程研究与临床康复, 2008, 12(14):2675-2678.
[20]  11. 赵乐军, 白硕佳, 曹红英, 等. 透明质酸钠交联凝胶的制备. 透析与人工器官, 2002, 13(1):45-46.
[21]  12. 陈建英, 汪敏, 刘杰,等. 注射用交联透明质酸钠凝胶的制备及其体外抗酶降解性的研究. 中国生化药物杂志, 2008, 29(4):262-265.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133