全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

Joint space compliance control for a hydraulic quadruped robot based on force feedback
Joint space compliance control for a hydraulic quadruped robot based on force feedback

DOI: 10.15918/j.jbit1004-0579.201625.0306

Keywords: hydraulic quadruped robot impact stiffness joint space compliance control nonlinear controller
hydraulic quadruped robot impact stiffness joint space compliance control nonlinear controller

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the realm of quadruped robot locomotion, compliance control is imperative to handle impacts when negotiating unstructured terrains. At the same time, kinematic tracking accuracy should be guaranteed during locomotion. To meet both demands, a joint space compliance controller is designed, so that compliance can be achieved in stance phase while position tracking performance can be guaranteed in swing phase. Unlike operational space compliance control, the joint space compliance control method is easy to implement and does not depend on robot dynamics. As for each joint actuator, high performance force control is of great importance for compliance design. Therefore, a nonlinear PI controller based on feedback linearization is proposed for the hydraulic actuator force control. Besides, an outer position loop(compliance loop) is closed for each joint. Experiments are carried out to verify the force controller and compliance of the hydraulic actuator. The robot leg compliance is assessed by a virtual prototyping simulation.
In the realm of quadruped robot locomotion, compliance control is imperative to handle impacts when negotiating unstructured terrains. At the same time, kinematic tracking accuracy should be guaranteed during locomotion. To meet both demands, a joint space compliance controller is designed, so that compliance can be achieved in stance phase while position tracking performance can be guaranteed in swing phase. Unlike operational space compliance control, the joint space compliance control method is easy to implement and does not depend on robot dynamics. As for each joint actuator, high performance force control is of great importance for compliance design. Therefore, a nonlinear PI controller based on feedback linearization is proposed for the hydraulic actuator force control. Besides, an outer position loop(compliance loop) is closed for each joint. Experiments are carried out to verify the force controller and compliance of the hydraulic actuator. The robot leg compliance is assessed by a virtual prototyping simulation.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133