全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

Adaptive learning rate GMM for moving object detection in outdoor surveillance for sudden illumination changes
Adaptive learning rate GMM for moving object detection in outdoor surveillance for sudden illumination changes

DOI: 10.15918/j.jbit1004-0579.201625.0121

Keywords: object detection background modeling Gaussian mixture model (GMM) learning rate frame difference
object detection background modeling Gaussian mixture model (GMM) learning rate frame difference

Full-Text   Cite this paper   Add to My Lib

Abstract:

A dynamic learning rate Gaussian mixture model (GMM) algorithm is proposed to deal with the problem of slow adaption of GMM in the case of moving object detection in the outdoor surveillance, especially in the presence of sudden illumination changes. The GMM is mostly used for detecting objects in complex scenes for intelligent monitoring systems. To solve this problem, a mixture Gaussian model has been built for each pixel in the video frame, and according to the scene change from the frame difference, the learning rate of GMM can be dynamically adjusted. The experiments show that the proposed method gives good results with an adaptive GMM learning rate when we compare it with GMM method with a fixed learning rate. The method was tested on a certain dataset, and tests in the case of sudden natural light changes show that our method has a better accuracy and lower false alarm rate.
A dynamic learning rate Gaussian mixture model (GMM) algorithm is proposed to deal with the problem of slow adaption of GMM in the case of moving object detection in the outdoor surveillance, especially in the presence of sudden illumination changes. The GMM is mostly used for detecting objects in complex scenes for intelligent monitoring systems. To solve this problem, a mixture Gaussian model has been built for each pixel in the video frame, and according to the scene change from the frame difference, the learning rate of GMM can be dynamically adjusted. The experiments show that the proposed method gives good results with an adaptive GMM learning rate when we compare it with GMM method with a fixed learning rate. The method was tested on a certain dataset, and tests in the case of sudden natural light changes show that our method has a better accuracy and lower false alarm rate.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133